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Introduction
Presentation

Definition
The generalized linear models and linear models, allow to study the
relation between the response variable (Y ) and a sets of explanatory
variables (X1...Xk)
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Introduction
Linear models

The linear models are composed of:
Ï A response variable (Y ) - Variable of interest

Ï Let’s say that (Y1...Yn) is a sample of size n of Y . Y1...Yn are
independant.

Ï Yi is normally distributed

Ï Explanatory variable(s) (X1...Xk) - Variable(s) used to explain the
variability in the response variable

Ï Explanatory variables can be expressed as : β0+β1X1+ ...+βkXk

Ï Sometimes, an explanatory variable Xj can be deduced by
elementary variables.

Ï X3 =X1 ∗X2
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Introduction
Linear models

Linear models
More precisely, linear models can be expressed as :

E (Y )=β0+β1X1+ ...+βkXk +ε
Where :

Ï E (Y ) is the expected value of Y
Ï ε is the error parameter (must follow a normal distribution and

homoscedastic)
We want to find the equation that best suits our data (Y1...Yn). The
parameters β0,β1...βn can be estimated by the least-square method.
Their estimations are those which minimize:∑n

i=1(Yi − (β0+β1X1i + ...+βkXki ))
2
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Introduction
Linear models

Limits of linear models
Ï Can’t explain a response variable that don’t follow a normal

distribution
Ï Can’t explain a response variable that takes value in a particular

interval
Ï Explanatory variables must have a linear effect on the response

variable

To overcome those issues, we can use a generalized linear model
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Introduction
Generalized linear models

Distribution Interval Uses link function

Normal ]−∞,+∞[ Linear response data E(Y )=βX

Poisson [0,+∞[ Count data log(E(Y ))=βX

Bernoulli {0,1} outcome of an event log
(

E(Y )
1−E(Y )

)
=βX

Binomial {0, ...,N} outcome of N events log
(

E(Y )
1−E(Y )

)
=βX

Exponential/Gamma ]−∞,+∞[ Exponential response data E(Y )−1 =βX
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Poisson distribution

Count data
Y is a categorial continuous data. Let’s note E(Y )=µ.

Ï Y ,→ Pois(µ) with P(Y = k)= µke−µ
k!

Ï E(Y )=Var(Y )=µ

Ï The link function is the log, the model is:
log(µ)=β0+β1X1+ ...+βkXk ∈]−∞,+∞[

on the count scale: µ= eβ0+β1X1+...+βkXk ∈ [0,+∞[
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Example: number of worm eggs against time
roughly from Manon Grosmaire experiments

n measurements of size of progeny (=nb eggs) on 2 time points.
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Example: number of worm eggs against time
Null model

Is there eggs production?
glm0 <- glm(nb.eggs.tot ∼ 1, data, family = "poisson")
The null model is:

log(µ)=β0
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Example: number of worm eggs against time
Null model: coefficient interpretation

If the model is true, asymptotically, estimators are gaussian.

Ï Recalling, log(µ)=β0,
thus µ= eβ0 .

Ï IC95%(β0)=β0±1.96×σβ0

Ï The mean number of eggs
predicted is
eβ0 ' 9.3[8.9,9.8] which is
significant (Wald test,
p-value <5%).
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Example: number of worm eggs against time
Day effect model

Is there a change of eggs production according to day?
glm1 <- glm(nb.eggs.tot ∼ day, data, family = "poisson")
The model is:

log(µ)=β0+β1×day
Bday is a factor: day = 0 for day 1, day = 1 for day 2).
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Example: number of worm eggs against time
Likelihood vs Deviance

Ï Likelihood, L, is
∏n

i=1P(Yi = yi ).

Ï Saturated model: Lsat = 1
Ï Null model: Lnull =

∏n
i=1

µyi e−µ
yi !

Ï Effect of x1: Lx1 =∏n
i=1

exp(β0+β1x1i )
yi e−exp(β0+β1x1i )
yi !

Ï The deviance is a variation of log-likelihood, LL.
Ï Dnull =−2(LLnull −LLsat)=−2LLnull
Ï Dx1 =−2(LLx1 −LLsat)=−2LLx1

Ï Models comparisons:
Deffect x1 =Dnull −Dx1 ,→ χ2((n−pnull )− (n−px1))

=−2(LLnull −LLx1) ,→ χ2(px1 −pnull )
If χ2

obs <χ2
th, the 2 models are not statistically different and you

should choose the more parsimonious.
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Example: number of worm eggs against time
Day effect model: coefficients interpretation

Ï On linear predictor scale, log(µ)=β0+β1×day

Ï On counts scale, µ= eβ0eβ1×day
Ï For day 1: day = 0, thus µday1 = eβ0

Ï For day 2: day = 1, thus µday2 = eβ0eβ1

eβ1 = µday2
µday1

= 0.9[0.78,0.96] indicates effect of ageing is significantly
deleterious for eggs production (Wald test, p-value <5%).

Ï Is it though relevant to add a day effect?

χ2
obs <χ2

th, the day effect model explains significantly better the
variability of the data (1-pchisq(7.6398, df = 1)).
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Example: number of worm eggs against time
Zoom on model assumption

Ï Do we have E(Y) = Var(Y)?

Residual variance is estimated by 1
n−p

n∑
i=1

(yi −µi )2.

If Poisson law and model are adapted, 1
n−p

n∑
i=1

(yi−µi )2
µi

∼ 1

or here it equals 6.98, indicating E (Y )<Var(Y ).
Tests are not reliable and this is not the best model; it causes sd error to
be deflated which could lead to significant predictor whereas it is not.

Claire Burny - Nicolas Fontrodona | Introduction to GLM
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Example: number of worm eggs against time
Alternatives

To deal with over-dispersion, knowing E (Y )=µ
Ï quasiPoisson: Var(Y )=φµ

glm1b <- glm(nb.eggs.tot ∼ day, data, family = "quasipoisson")

Ï Negative binomial: Y ,→Pois(Θ×µ) and Θ ,→Gamma(α,α) with E(Θ)= 1
Var(Y )=µ+α×µ2

The link function becomes: log(
αµ

1+αµ ).glm2 <- MASS::glm.nb(nb.eggs.tot ∼ day, data)
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Example: number of worm eggs against time
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Example: number of worm eggs against time
Last but not least 1/2

Ï Why to insist on type of data?
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Example: number of worm eggs against time
Last but not least 2/2

Ï Quick display of interaction: add the strain effect.
Without interaction:
glm1ds <- glm(nb.eggs.tot ∼ day+strain, data,

family = "poisson")

lm(µ)=β0+β1×day +β2×strain

µday2/WT = eβ0 eβ1 eβ2

With interaction:
glm1dsI <- glm(nb.eggs.tot ∼ day∗strain, data, family = "poisson")

lm(µ)=β0+β1×day +β2×strain+β3×day ×strain

µday2/WT = eβ0 eβ1 eβ2 eβ3

Models comparisons:
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µday2/WT = eβ0 eβ1 eβ2

With interaction:
glm1dsI <- glm(nb.eggs.tot ∼ day∗strain, data, family = "poisson")

lm(µ)=β0+β1×day +β2×strain+β3×day ×strain

µday2/WT = eβ0 eβ1 eβ2 eβ3

Models comparisons:
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Binomial distribution

Proportion/% data
Y is the number of times an event occur on n tries.

Ï Y ,→ Binom(n,p) with P(Y = k)=Ck
n (1−p)(n−k)

Ï We are more interested on the frequency of the event µ= Y
n

Ï E(Yn )= p and var(Yn )= p(1−p)
n

Ï The link function is the logit function, the model is:

logit(µ)= log(
µ

1−µ )=β0+β1X1+ ...+βkXk ∈]−∞,+∞[

on the proportion scale: µ= 1
1+e−(β0+β1X1+...+βkXk )

∈ [0,1]
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Example: proportion of male worm eggs against time
from Manon Grosmaire experiments

n measurements of male progeny (=nb eggs) on 2 time points.
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Example: proportion of male worm eggs against time
Null model

Is there male eggs production?
bglm0 <- glm(cbind(nb.eggs.male, nb.eggs.tot-nb.eggs.male) ∼ 1,
data = data, family = "binomial")
The null model is:

log(
µ

1−µ )= log( pmale
1−pmale

)= log(odd)=β0 ⇔ odd = eβ0

On 4 eggs, an odds equal to 3 indicates that 3 eggs against 1 will be male.
The more the odds, the more the probability.
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Example: proportion of male worm eggs against time
Null model: coefficient interpretation

If the model is true, asymptotically, estimators are gaussian.

Ï Recalling, odd = eβ0 .
Ï IC95%(β0)=β0±1.96×σβ0

Ï The odd of male birth
predicted is
eβ0 ' 0.15[0.13,0.17] which
is significant (Wald test,
p-value <5%).
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Example: proportion of male worm eggs against time
Day effect model

Is there a change of male eggs production according to day?
bglm1 <- glm(cbind(nb.eggs.male, nb.eggs.tot-nb.eggs.male)
∼ day, data = data, family = "binomial")
The model is:

log(odd)=β0+β1×day
Bday is a factor: day = 0 for day 1, day = 1 for day 2.
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Example: proportion of male worm eggs against time
Day effect model: coefficients interpretation

Ï On linear predictor scale, log(odd)=β0+β1×day
Ï For day 1: day = 0, thus log(oddday1)=β0

Ï For day 2: day = 1, thus log(oddday2)=β0+β1
Ï Towards Odds Ratio:

Ï log(
oddday2
oddday1

)= log(ORdays )=β1

Ï ORdays = eβ1=× odd from day 1 to 2
Ï ORdays = 2.2[1.6,3.0]> 1 suggests ageing tends to favor chances to

get males (Wald test, p-value <5%).
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Example: proportion of male worm eggs against time
Day effect model: coefficients interpretation

Ï Is it though relevant to add a day effect?

χ2
obs <χ2

th, the day effect model explains significantly better the
variability of the data (1-pchisq(7.6398, df = 1)).
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The session is finished!

Thanks for coming!

Ï The next session will be on Machine Learning (co-clustering
analysis) by Margot Selosse, PhD student, from Lyon II university,
Foodle to come.

Ï A quick reminder about our Slack tchat.
Ï Any topics you want to discuss?
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