Introduction to GLM

Generalized Linear Model

Claire Burny Nicolas Fontrodona

Club stat

LBMC, ENS de Lyon, site Monod

October 17, 2017

Definition

The generalized linear models and linear models, allow to study the relation between the response variable (Y) and a sets of explanatory variables $(X_1...X_k)$

The linear models are composed of:

- ► A response variable (Y) Variable of interest
 - Let's say that $(Y_1...Y_n)$ is a sample of size n of Y. $Y_1...Y_n$ are independant.
 - Y_i is normally distributed
- **Explanatory variable(s)** $(X_1...X_k)$ Variable(s) used to explain the variability in the response variable
- ► Explanatory variables can be expressed as : $\beta_0 + \beta_1 X_1 + ... + \beta_k X_k$
- Sometimes, an explanatory variable X_j can be deduced by elementary variables.
 - $X_3 = X_1 * X_2$

Linear models

More precisely, linear models can be expressed as :

$$E(Y) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \epsilon$$

Where:

- ► E(Y) is the expected value of Y
- ε is the error parameter (must follow a normal distribution and homoscedastic)

We want to find the equation that best suits our data $(Y_1...Y_n)$. The parameters $\beta_0, \beta_1...\beta_n$ can be estimated by the least-square method. Their estimations are those which minimize:

$$\sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_{1i} + ... + \beta_k X_{ki}))^2$$

Limits of linear models

- Can't explain a response variable that don't follow a normal distribution
- Can't explain a response variable that takes value in a particular interval
- Explanatory variables must have a linear effect on the response variable

To overcome those issues, we can use a generalized linear model

Introduction Generalized linear models

Distribution	Interval	Uses	link function
Normal	$]-\infty,+\infty[$	Linear response data	$E(Y) = \beta X$
Poisson	$[0,+\infty[$	Count data	$log(E(Y)) = \beta X$
Bernoulli	{0,1}	outcome of an event	$log\left(\frac{E(Y)}{1-E(Y)}\right) = \beta X$
Binomial	{0,, N }	outcome of N events	$\log\left(\frac{E(Y)}{1-E(Y)}\right) = \beta X$
Exponential/Gamma	$]-\infty,+\infty[$	Exponential response data	$E(Y)^{-1} = \beta X$

Poisson distribution

Count data

Y is a categorial continuous data. Let's note $E(Y) = \mu$. Y $\hookrightarrow Pois(\mu)$ with $P(Y = k) = \frac{\mu^k e^{-\mu}}{k!}$

- \blacktriangleright $E(Y) = Var(Y) = \mu$

Poisson distribution

Count data

Y is a categorial continuous data. Let's note $E(Y) = \mu$.

- $Y \hookrightarrow Pois(\mu)$ with $P(Y = k) = \frac{\mu^k e^{-\mu}}{k!}$
- E(Y) = Var(Y) = μ
- ► The link function is the log, the model is:

$$log(\mu) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k \in]-\infty, +\infty[$$

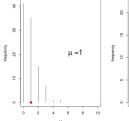
Poisson distribution

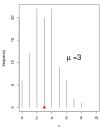
Count data

Y is a categorial continuous data. Let's note $E(Y) = \mu$.

- $Y \hookrightarrow Pois(\mu)$ with $P(Y = k) = \frac{\mu^k e^{-\mu}}{k!}$
- \blacktriangleright $E(Y) = Var(Y) = \mu$
- ► The link function is the log, the model is:

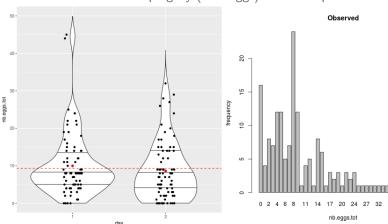
$$log(\mu) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k \in]-\infty, +\infty[$$
 on the count scale:
$$\mu = \mathrm{e}^{\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k} \in [0, +\infty[$$





Example: number of worm eggs against time roughly from Manon Grosmaire experiments

n measurements of size of progeny (=nb eggs) on 2 time points.



Is there eggs production?

glm0 <- glm(nb.eggs.tot \sim 1, data, family = "poisson") The null model is: $\log(\mu) = \beta_0$

Is there eggs production?

 $glm0 \leftarrow glm(nb.eggs.tot \sim 1, data, family = "poisson")$ The null model is:

$$\log(\mu) = \beta_0$$

```
> summary(glm0)
Call:
glm(formula = nb.eggs.tot ~ 1, family = "poisson", data = data)
Deviance Residuals:
Min 1Q Median 3Q Max
-4.3166 -1.9670 -0.4421 1.3548 8.3888
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.23178 0.02606 85.63 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 1038.3 on 157 degrees of freedom
Residual deviance: 1038.3 on 157 degrees of freedom
AIC: 1598.9
Number of Fisher Scoring iterations: 5
```


If the model is true, asymptotically, estimators are gaussian.

```
> summary(qlm0)
Call:
glm(formula = nb.eggs.tot ~ 1. family = "poisson". data = data)
Deviance Residuals:
                  Median
                                       Max
-4.3166 -1.9670 -0.4421 1.3548
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.23178 0.02606 85.63 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 1038.3 on 157 degrees of freedom
Residual deviance: 1038.3 on 157 degrees of freedom
AIC: 1598.9
Number of Fisher Scoring iterations: 5
```

- Recalling, $log(\mu) = \beta_0$, thus $\mu = e^{\beta_0}$.
- $IC_{95\%}(\beta_0) = \beta_0 \pm 1.96 \times \sigma_{\beta_0}$

If the model is true, asymptotically, estimators are gaussian.

```
> summary(qlm0)
Call:
glm(formula = nb.eggs.tot ~ 1. family = "poisson". data = data)
Deviance Residuals:
                  Median
                                       Max
-4.3166 -1.9670 -0.4421 1.3548
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.23178 0.02606
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 1038.3 on 157 degrees of freedom
Residual deviance: 1038.3 on 157 degrees of freedom
AIC: 1598.9
Number of Fisher Scoring iterations: 5
```

- Recalling, $log(\mu) = \beta_0$, thus $\mu = e^{\beta_0}$.
- $IC_{95\%}(\beta_0) = \beta_0 \pm 1.96 \times \sigma_{\beta_0}$
- The mean number of eggs predicted is $e^{\beta_0} \simeq 9.3[8.9, 9.8]$ which is significant (Wald test, p-value <5%).

Example: number of worm eggs against time Day effect model

Is there a change of eggs production according to day?

 $glm1 \leftarrow glm(nb.eggs.tot \sim day, data, family = "poisson")$ The model is:

$$log(\mu) = \beta_0 + \beta_1 \times day$$

 $\triangle day$ is a factor: day = 0 for day 1, day = 1 for day 2).

Example: number of worm eggs against time Day effect model

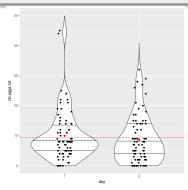
Is there a change of eggs production according to day?

glm1 <- glm(nb.eggs.tot ~ day, data, family = "poisson")
The model is:</pre>

$$log(\mu) = \beta_0 + \beta_1 \times day$$

 $\triangle day$ is a factor: day = 0 for day 1, day = 1 for day 2).

```
> summary(glm1)
Call:
glm(formula = nb.eggs.tot ~ day, family = "poisson", data = data)
Deviance Residuals:
             10 Median
-4.4693 -2.1574 -0.6517 1.1964 8.0905
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.30132 0.03560 64.64 < 2e-16 ***
                      0.05226 -2.76 0.00577 **
dav2
           -0.14427
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 1038.3 on 157 degrees of freedom
Residual deviance: 1030.6 on 156 degrees of freedom
AIC: 1593.3
Number of Fisher Scoring iterations: 5
```



▶ **Likelihood**, *L*, is $\prod_{i=1}^{n} P(Y_i = y_i)$.

- ▶ **Likelihood**, *L*, is $\prod_{i=1}^{n} P(Y_i = y_i)$.
 - ▶ Saturated model: $L_{sat} = 1$

- ▶ **Likelihood**, *L*, is $\prod_{i=1}^{n} P(Y_i = y_i)$.
 - ► Saturated model: $L_{sat} = 1$
 - Null model: $L_{null} = \prod_{i=1}^{n} \frac{\mu^{y_i} e^{-\mu}}{y_i!}$

- ▶ **Likelihood**, *L*, is $\prod_{i=1}^{n} P(Y_i = y_i)$.
 - ► Saturated model: $L_{sat} = 1$
 - Null model: $L_{null} = \prod_{i=1}^{n} \frac{\mu^{y_i} e^{-\mu}}{y_i!}$
 - ► Effect of x_1 : $L_{x_1} = \prod_{i=1}^{n} \frac{\exp(\beta_0 + \beta_1 x_{1i})^{y_i} e^{-\exp(\beta_0 + \beta_1 x_{1i})}}{y_i!}$

- ▶ **Likelihood**, *L*, is $\prod_{i=1}^{n} P(Y_i = y_i)$.
 - ► Saturated model: $L_{sat} = 1$
 - ► Null model: $L_{null} = \prod_{i=1}^{n} \frac{\mu^{y_i} e^{-\mu}}{y_i!}$
 - ► Effect of x_1 : $L_{x_1} = \prod_{i=1}^n \frac{\exp(\beta_0 + \beta_1 x_{1i})^{y_i} e^{-\exp(\beta_0 + \beta_1 x_{1i})}}{y_i!}$
- ► The **deviance** is a variation of **log**-likelihood, LL.

- ▶ **Likelihood**, *L*, is $\prod_{i=1}^n P(Y_i = y_i)$.
 - ► Saturated model: $L_{sat} = 1$
 - Null model: $L_{null} = \prod_{i=1}^{n} \frac{\mu^{y_i} e^{-\mu}}{y_i!}$
 - ► Effect of x_1 : $L_{x_1} = \prod_{i=1}^n \frac{\exp(\beta_0 + \beta_1 x_{1i})^{y_i} e^{-\exp(\beta_0 + \beta_1 x_{1i})}}{y_i!}$
- ► The **deviance** is a variation of **log**-likelihood, LL.
 - $D_{null} = -2(LL_{null} LL_{sat}) = -2LL_{null}$

- ▶ **Likelihood**, *L*, is $\prod_{i=1}^{n} P(Y_i = y_i)$.
 - ► Saturated model: $L_{sat} = 1$
 - Null model: $L_{null} = \prod_{i=1}^{n} \frac{\mu^{y_i} e^{-\mu}}{y_i!}$
 - ► Effect of x_1 : $L_{x_1} = \prod_{i=1}^n \frac{\exp(\beta_0 + \beta_1 x_{1i})^{y_i} e^{-\exp(\beta_0 + \beta_1 x_{1i})}}{y_i!}$
- ► The **deviance** is a variation of **log**-likelihood, LL.
 - $D_{null} = -2(LL_{null} LL_{sat}) = -2LL_{null}$
 - $D_{X_1} = -2(LL_{X_1} LL_{sat}) = -2LL_{X_1}$

- ▶ **Likelihood**, *L*, is $\prod_{i=1}^{n} P(Y_i = y_i)$.
 - ► Saturated model: $L_{sat} = 1$
 - Null model: $L_{null} = \prod_{i=1}^{n} \frac{\mu^{y_i} e^{-\mu}}{y_i!}$
 - ► Effect of x_1 : $L_{x_1} = \prod_{i=1}^n \frac{\exp(\beta_0 + \beta_1 x_{1i})^{y_i} e^{-\exp(\beta_0 + \beta_1 x_{1i})}}{y_i!}$
- ► The deviance is a variation of log-likelihood, LL.
 - $D_{null} = -2(LL_{null} LL_{sat}) = -2LL_{null}$
 - $D_{x_1} = -2(LL_{x_1} LL_{sat}) = -2LL_{x_1}$
- Models comparisons:

$$D_{effect x_1} = D_{null} - D_{x_1} \qquad \hookrightarrow \chi^2((n - p_{null}) - (n - p_{x_1}))$$

- ▶ **Likelihood**, *L*, is $\prod_{i=1}^{n} P(Y_i = y_i)$.
 - ► Saturated model: $L_{sat} = 1$
 - Null model: $L_{null} = \prod_{i=1}^{n} \frac{\mu^{y_i} e^{-\mu}}{y_i!}$
 - ► Effect of x_1 : $L_{x_1} = \prod_{i=1}^n \frac{\exp(\beta_0 + \beta_1 x_{1i})^{y_i} e^{-\exp(\beta_0 + \beta_1 x_{1i})}}{y_i!}$
- ► The **deviance** is a variation of **log**-likelihood, LL.
 - $D_{null} = -2(LL_{null} LL_{sat}) = -2LL_{null}$
 - $D_{x_1} = -2(LL_{x_1} LL_{sat}) = -2LL_{x_1}$
- Models comparisons:

$$D_{\text{effect } x_1} = D_{null} - D_{x_1} \qquad \hookrightarrow \chi^2((n - p_{null}) - (n - p_{x_1}))$$

= -2(LL_{null} - LL_{x_1}) \loryrightarrow \chi^2((p_{x_1} - p_{null}))

- ▶ **Likelihood**, *L*, is $\prod_{i=1}^n P(Y_i = y_i)$.
 - ► Saturated model: $L_{sat} = 1$
 - Null model: $L_{null} = \prod_{i=1}^{n} \frac{\mu^{y_i} e^{-\mu}}{y_i!}$
 - ► Effect of x_1 : $L_{x_1} = \prod_{i=1}^n \frac{exp(\beta_0 + \beta_1 x_{1i})^{y_i} e^{-exp(\beta_0 + \beta_1 x_{1i})}}{y_i!}$
- ► The **deviance** is a variation of **log**-likelihood, LL.
 - $D_{null} = -2(LL_{null} LL_{sat}) = -2LL_{null}$
 - $D_{x_1} = -2(LL_{x_1} LL_{sat}) = -2LL_{x_1}$
- Models comparisons:

$$D_{\text{effect } x_1} = D_{null} - D_{x_1} \qquad \hookrightarrow \chi^2((n - p_{null}) - (n - p_{x_1}))$$

$$= -2(LL_{null} - LL_{x_1}) \qquad \hookrightarrow \chi^2(p_{x_1} - p_{null})$$

$$\hookrightarrow \chi^2(p_{x_1} - p_{null})$$

If $\chi^2_{obs} < \chi^2_{th}$, the 2 models are not statistically different and you should choose the more parsimonious.

► On linear predictor scale, $log(\mu) = \beta_0 + \beta_1 \times day$

- On linear predictor scale, $log(\mu) = \beta_0 + \beta_1 \times day$
- On counts scale, $\mu = e^{\beta_0} e^{\beta_1 \times day}$
 - For day 1: day = 0, thus $\mu_{day_1} = e^{\beta_0}$
 - For day 2: day = 1, thus $\mu_{day_2} = e^{\beta_0} e^{\beta_1}$

- On linear predictor scale, $log(\mu) = \beta_0 + \beta_1 \times day$
- On counts scale, $\mu = e^{\beta_0} e^{\beta_1 \times day}$
 - For day 1: day = 0, thus $\mu_{day_1} = e^{\beta_0}$
 - For day 2: day = 1, thus $\mu_{day_2} = e^{\beta_0} e^{\beta_1}$
 - $e^{\beta_1}=rac{\mu_{day_2}}{\mu_{day_1}}=0.9[0.78,0.96]$ indicates effect of ageing is significantly deleterious for eggs production (Wald test, p-value <5%).

- ▶ On linear predictor scale, $log(\mu) = \beta_0 + \beta_1 \times day$
- On counts scale, $\mu = e^{\beta_0} e^{\beta_1 \times day}$
 - For day 1: day = 0, thus $\mu_{day_1} = e^{\beta_0}$
 - For day 2: day = 1, thus $\mu_{day_2} = e^{\beta_0} e^{\beta_1}$

 $e^{\beta_1} = \frac{\mu_{day_2}}{\mu_{day_1}} = 0.9 [0.78, 0.96] \text{ indicates effect of ageing is significantly deleterious for eggs production (Wald test, p-value <5%)}.$

Is it though relevant to add a day effect?

```
> anova(glm0, glm1, test = "Chisq")
Analysis of Deviance Table

Model 1: nb.eggs.tot ~ 1

Model 2: nb.eggs.tot ~ day
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 157
2 156 1030.6 1 7.6398 0.00571 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


- ▶ On linear predictor scale, $log(\mu) = \beta_0 + \beta_1 \times day$
- On counts scale, $\mu = e^{\beta_0} e^{\beta_1 \times day}$
 - For day 1: day = 0, thus $\mu_{day_1} = e^{\beta_0}$
 - For day 2: day = 1, thus $\mu_{day_2} = e^{\beta_0} e^{\beta_1}$

 $e^{\beta_1} = \frac{\mu_{day_2}}{\mu_{day_1}} = 0.9 [0.78, 0.96] \text{ indicates effect of ageing is significantly deleterious for eggs production (Wald test, p-value <5%)}.$

Is it though relevant to add a day effect?

 $\chi^2_{obs} < \chi^2_{th}$, the day effect model explains significantly better the variability of the data (1-pchisq(7.6398, df = 1)).

Example: number of worm eggs against time Zoom on model assumption

▶ Do we have E(Y) = Var(Y)?

Example: number of worm eggs against time Zoom on model assumption

▶ Do we have E(Y) = Var(Y)?

Residual variance is estimated by $\frac{1}{n-p} \sum_{i=1}^{n} (y_i - \mu_i)^2$.

If Poisson law and model are adapted, $\frac{1}{n-p}\sum\limits_{i=1}^{n}\frac{(y_i-\mu_i)^2}{\mu_i}\sim 1$

Example: number of worm eggs against time Zoom on model assumption

▶ Do we have E(Y) = Var(Y)?

Residual variance is estimated by $\frac{1}{n-p} \sum_{i=1}^{n} (y_i - \mu_i)^2$.

If Poisson law and model are adapted, $\frac{1}{n-p}\sum\limits_{i=1}^{n}\frac{(y_i-\mu_i)^2}{\mu_i}\sim 1$

or here it equals 6.98, indicating E(Y) < Var(Y).

Tests are not reliable and this is not the best model; it causes sd error to be deflated which could lead to significant predictor whereas it is not.

To deal with over-dispersion, knowing $E(Y) = \mu$

```
• quasiPoisson: Var(Y) = \phi \mu glm1b <- glm(nb.eggs.tot ~ day, data, family = "quasipoisson")
```


To deal with over-dispersion, knowing $E(Y) = \mu$

```
• quasiPoisson: Var(Y) = \phi \mu glm1b <- glm(nb.eggs.tot ~ day, data, family = "quasipoisson")
```

Negative binomial: $Y \hookrightarrow Pois(\Theta \times \mu)$ and $\Theta \hookrightarrow Gamma(\alpha, \alpha)$ with $E(\Theta) = 1$ $Var(Y) = \mu + \alpha \times \mu^2$ The link function becomes: $log(\frac{\alpha\mu}{1+\alpha\mu})$. glm2 <- MASS::glm.nb(nb.eggs.tot \sim day, data)

Example: number of worm eggs against time Alternatives

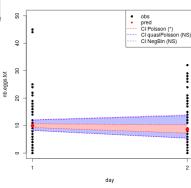
To deal with over-dispersion, knowing $E(Y) = \mu$

```
• quasiPoisson: Var(Y) = \phi \mu glm1b <- glm(nb.eggs.tot ~ day, data, family = "quasipoisson")
```

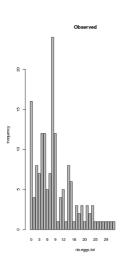
▶ Negative binomial: $Y \hookrightarrow Pois(\Theta \times \mu)$ and $\Theta \hookrightarrow Gamma(\alpha, \alpha)$ with $E(\Theta) = 1$

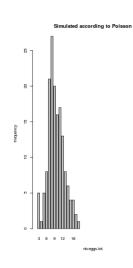
```
Var(Y) = \mu + \alpha \times \mu^2
```

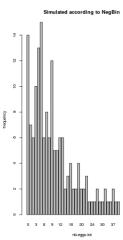
The link function becomes: $log(\frac{\alpha\mu}{1+\alpha\mu})$. glm2 <- MASS::glm.nb(nb.eggs.tot \sim day, data)



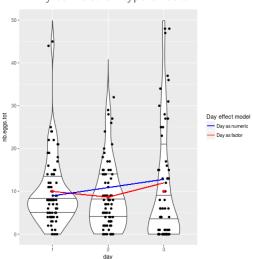
Example: number of worm eggs against time Alternatives







Why to insist on type of data?



Quick display of interaction: add the strain effect.

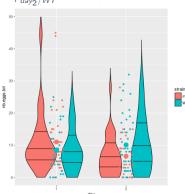
Without interaction:

glm1ds <- glm(nb.eggs.tot ~ day+strain, data, family = "poisson") $Im(\mu) = \beta_0 + \beta_1 \times day + \beta_2 \times strain$ $\mu_{day_2/WT} = e^{\bar{\beta}} 0 e^{\beta} 1 e^{\beta} 2$ 10-

Quick display of interaction: add the strain effect.

Without interaction:

glmids <- glm(nb.eggs.tot \sim day+strain, data, family = "poisson") $Im(\mu) = \beta_0 + \beta_1 \times day + \beta_2 \times strain$ $\mu_{day_2}/WT = e^{\beta_0} e^{\beta_1} e^{\beta_2}$



With interaction:

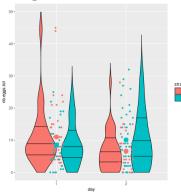
$${\tt glm1dsI} \, \leftarrow \, {\tt glm(nb.eggs.tot} \, \sim \, {\tt day*strain, \, data, \, family \, = \, "poisson")}$$

► Quick display of interaction: add the *strain* effect.

Without interaction:

glmids <- glm(nb.eggs.tot
$$\sim$$
 day+strain, data, family = "poisson")
$$Im(\mu) = \beta_0 + \beta_1 \times day + \beta_2 \times strain$$

$$\mu_{day_2/WT} = e^{\beta_0} e^{\beta_1} e^{\beta_2}$$



With interaction:

glmidsI <- glm(nb.eggs.tot
$$\sim$$
 day*strain, data, family = "poisson")
$$Im(\mu) = \beta_0 + \beta_1 \times day + \beta_2 \times strain + \beta_3 \times day \times strain$$

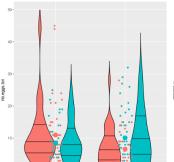
$$\mu_{day_2/WT} = e^{\beta_0} e^{\beta_1} e^{\beta_2} e^{\beta_3}$$

Quick display of interaction: add the strain effect.

Without interaction:

glmids <- glm(nb.eggs.tot
$$\sim$$
 day+strain, data, family = "poisson")
$$Im(\mu) = \beta_0 + \beta_1 \times day + \beta_2 \times strain$$

$$\mu_{day_2/WT} = e^{\beta_0} e^{\beta_1} e^{\beta_2}$$



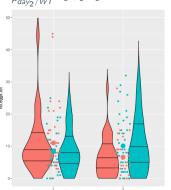
With interaction:

```
glmldsI <- glm(nb.eggs.tot \sim day*strain, data, family = "poisson") Im(\mu) = \beta_0 + \beta_1 \times day + \beta_2 \times strain + \beta_3 \times day \times strain \mu_{day_2/WT} = e^{\beta_0} e^{\beta_1} e^{\beta_2} e^{\beta_3}
```


Quick display of interaction: add the strain effect.

Without interaction:

glmlds <- glm(nb.eggs.tot \sim day+strain, data, family = "poisson") $Im(\mu) = \beta_0 + \beta_1 \times day + \beta_2 \times strain$ $\mu_{day_2/WT} = e^{\beta_0} e^{\beta_1} e^{\beta_2}$



With interaction:

```
glmidsI <- glm(nb.eggs.tot \sim day*strain, data, family = "poisson") 
 Im(\mu) = \beta_0 + \beta_1 \times day + \beta_2 \times strain + \beta_3 \times day \times strain 
 \mu_{day_2/WT} = e^{\beta_0} e^{\beta_1} e^{\beta_2} e^{\beta_2}
```

```
summary(qlm1dsI)
Call:
glm(formula = nb.eggs.tot ~ dav * strain. family = "poisson".
    data = data)
Deviance Residuals:
-4.6950 -1.9715 -0.6709
                            1.1131
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept)
              2.39987
dav2
              -0.51188
              -0.25447
 av2:strainWT 0.67988
                          0.11071
```

Models comparisons:

```
> anova(glmids, glmidsI, test = "Chisq")
Analysis of Deviance Table

Model 1: nb.eggs.tot ~ day + strain
Model 2: nb.eggs.tot ~ day * strain
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 155 1029.53
2 154 990.53 1 39.001 4.236e-10 ***
```


Proportion/% data

►
$$Y \hookrightarrow Binom(n,p)$$
 with $P(Y = k) = C_n^k (1-p)^{(n-k)}$

Proportion/% data

- ► $Y \hookrightarrow Binom(n,p)$ with $P(Y=k) = C_n^k (1-p)^{(n-k)}$
- ▶ We are more interested on the frequency of the event $\mu = \frac{Y}{n}$
- \blacktriangleright $E(\frac{Y}{n}) = p$ and $var(\frac{Y}{n}) = \frac{p(1-p)}{n}$

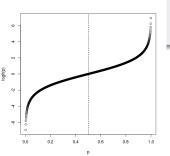
Proportion/% data

- ► $Y \hookrightarrow Binom(n,p)$ with $P(Y=k) = C_n^k (1-p)^{(n-k)}$
- We are more interested on the frequency of the event $\mu = \frac{Y}{n}$
- $E(\frac{Y}{n}) = p$ and $var(\frac{Y}{n}) = \frac{p(1-p)}{n}$
- ► The link function is the logit function, the model is:

$$logit(\mu) = log(\frac{\mu}{1-\mu}) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k \in] - \infty, + \infty[$$

Proportion/% data

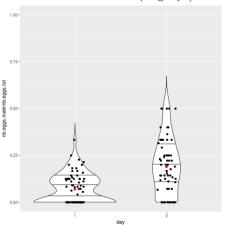
- ► $Y \hookrightarrow Binom(n,p)$ with $P(Y=k) = C_n^k (1-p)^{(n-k)}$
- We are more interested on the frequency of the event $\mu = \frac{Y}{n}$
- ► $E(\frac{Y}{n}) = p$ and $var(\frac{Y}{n}) = \frac{p(1-p)}{n}$
- ► The link function is the logit function, the model is:



$$\begin{split} \log\!it(\mu) &= \log\big(\frac{\mu}{1-\mu}\big) = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k \in] - \infty, + \infty[\\ \text{on the proportion scale: } \mu &= \frac{1}{1+e^{-(\beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k)}} \in [0,1] \end{split}$$

Example: proportion of male worm eggs against time from Manon Grosmaire experiments

n measurements of male progeny (=nb eggs) on 2 time points.



Is there male eggs production?

bglm0 <- glm(cbind(nb.eggs.male, nb.eggs.tot-nb.eggs.male) ~ 1,
data = data, family = "binomial")</pre>

The null model is:

$$log(\frac{\mu}{1-\mu}) = log(\frac{p_{male}}{1-p_{male}}) = log(odd) = \beta_0 \Leftrightarrow odd = e^{\beta_0}$$

Is there male eggs production?

bglm0 <- glm(cbind(nb.eggs.male, nb.eggs.tot-nb.eggs.male) ~ 1,
data = data, family = "binomial")</pre>

The null model is:

$$log(\frac{\mu}{1-\mu}) = log(\frac{p_{male}}{1-p_{male}}) = log(odd) = \beta_0 \Leftrightarrow odd = e^{\beta_0}$$

On 4 eggs, an odds equal to 3 indicates that 3 eggs against 1 will be male. The more the odds, the more the probability.

If the model is true, asymptotically, estimators are gaussian.

```
> summary(bglm0)
Call:
glm(formula = cbind(nb.eggs.male, nb.eggs.tot - nb.eggs.male) ~
   1, family = "binomial", data = data)
Deviance Residuals:
    Min
                     Median
                                   30
-2.04765 -1.01609 -0.04592 0.43340
                                        2.20961
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.89712 0.07739 -24.51 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 159.62 on 141 degrees of freedom
Residual deviance: 159.62 on 141 degrees of freedom
AIC: 369.72
Number of Fisher Scoring iterations: 4
```

- Recalling, $odd = e^{\beta_0}$.
- $IC_{95\%}(\beta_0) = \beta_0 \pm 1.96 \times \sigma_{\beta_0}$

LBI

If the model is true, asymptotically, estimators are gaussian.

```
> summary(bglm0)
Call:
glm(formula = cbind(nb.eggs.male, nb.eggs.tot - nb.eggs.male) ~
   1, family = "binomial", data = data)
Deviance Residuals:
    Min
-2.04765 -1.01609 -0.04592 0.43340
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.89712
                       0.07739 -24.51 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 159.62 on 141 degrees of freedom
Residual deviance: 159.62 on 141 degrees of freedom
AIC: 369.72
Number of Fisher Scoring iterations: 4
```

- Recalling, $odd = e^{\beta_0}$.
- $IC_{95\%}(\beta_0) = \beta_0 \pm 1.96 \times \sigma_{\beta_0}$
- ► The odd of male birth predicted is $e^{\beta_0} \simeq 0.15[0.13, 0.17]$ which is significant (Wald test, p-value <5%).

Example: proportion of male worm eggs against time Day effect model

Is there a change of male eggs production according to day?

bglm1 <- glm(cbind(nb.eggs.male, nb.eggs.tot-nb.eggs.male)
~ day, data = data, family = "binomial")</pre>

The model is:

 $log(odd) = \beta_0 + \beta_1 \times day$

 $\triangle day$ is a factor: day = 0 for day 1, day = 1 for day 2.

- ► On linear predictor scale, $log(odd) = \beta_0 + \beta_1 \times day$
 - ► For day 1: day = 0, thus $log(odd_{day_1}) = \beta_0$

- ▶ On linear predictor scale, $log(odd) = \beta_0 + \beta_1 \times day$
 - ► For day 1: day = 0, thus $log(odd_{day_1}) = \beta_0$
 - For day 2: day = 1, thus $log(odd_{day_2}) = \beta_0 + \beta_1$

- ► On linear predictor scale, $log(odd) = \beta_0 + \beta_1 \times day$
 - ► For day 1: day = 0, thus $log(odd_{day_1}) = \beta_0$
 - For day 2: day = 1, thus $log(odd_{day_2}) = \beta_0 + \beta_1$
- ► Towards Odds Ratio:

$$\log\left(\frac{odd_{day_2}}{odd_{day_1}}\right) = \log(OR_{days}) = \beta_1$$

- ▶ On linear predictor scale, $log(odd) = \beta_0 + \beta_1 \times day$
 - For day 1: day = 0, thus $log(odd_{day_1}) = \beta_0$
 - For day 2: day = 1, thus $log(odd_{day_2}) = \beta_0 + \beta_1$
- ► Towards Odds Ratio:
 - ► $log(\frac{odd_{day_2}}{odd_{day_1}}) = log(OR_{days}) = \beta_1$
 - $OR_{days} = e^{\beta_1} = \times$ odd from day 1 to 2

- ▶ On linear predictor scale, $log(odd) = \beta_0 + \beta_1 \times day$
 - For day 1: day = 0, thus $log(odd_{day_1}) = \beta_0$
 - ► For day 2: day = 1, thus $log(odd_{day_2}) = \beta_0 + \beta_1$
- ► Towards Odds Ratio:
 - $\log\left(\frac{odd_{day_2}}{odd_{day_1}}\right) = \log(OR_{days}) = \beta_1$
 - $OR_{days} = e^{\beta_1} = \times$ odd from day 1 to 2
 - OR_{days} = 2.2[1.6,3.0] > 1 suggests ageing tends to favor chances to get males (Wald test, p-value <5%).

```
> summary(bglm1)
glm(formula = cbind(nb.eggs.male, nb.eggs.tot - nb.eggs.male) ~
    day, family = "binomial", data = data)
Deviance Residuals:
Min 10 Median 30 Max
-2.4297 -0.8809 0.0000 0.3562 2.0473
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.3294
                         0.1252 -18.605 < 2e-16 ***
                         0.1602 5.017 5.23e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 159.62 on 141 degrees of freedom
Residual deviance: 133.45 on 140 degrees of freedom
AIC: 345.55
Number of Fisher Scoring iterations: 4
```

► Is it though relevant to add a day effect?

▶ Is it though relevant to add a day effect?

Is it though relevant to add a day effect?

```
> anova(glm0, glm1, test = "Chisq")
Analysis of Deviance Table

Model 1: nb.eggs.tot ~ 1
Model 2: nb.eggs.tot ~ day
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 157 1038.3
2 156 1030.6 1 7.6398 0.00571 **
...
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

 $\chi^2_{obs} < \chi^2_{th}$, the day effect model explains significantly better the variability of the data (1-pchisq(7.6398, df = 1)).

The session is finished!

Thanks for coming!

- ► The next session will be on Machine Learning (co-clustering analysis) by Margot Selosse, PhD student, from Lyon II university, Foodle to come.
- ► A quick reminder about our Slack tchat.
- Any topics you want to discuss?