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Historical generalities : ”Frequentists”

Hypothesis Tests→ we reject or not H0 with a α risk
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Historical generalities : ”Bayesian”

Bayesian statistics

Bayes theorem :

posterior probability = likelihood× prior probability
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Statistical notion #1

Descriptive statistics→ data visualisation
Inferential statistics→ to draw conclusions about the entire
population from samples
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Statistical notion #2

A test is a rule to decide between H0 or H1 hypothesis. We
compute a statistics and compare it to a decisional threshold ; if
the value of statistics is ≤ threshold, observe such a value is
too less likely considering the risk we are ready to take.
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Statistical notion #2

Hypothesis H0 : null hypothesis

The observed differences are not different from random
fluctuations
This is H0 hypothesis that is controlled during the test

Hypothesis H1 : alternative hypothesis
Negation of H0 hypothesis
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Be careful with test conclusions : accept H0 6= H0 is true. We
can only reject or not H0, never accept it !
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Statistical notion #3

α & β risks
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A
ct

ua
l

Reject H0 -> H1 «Accept» H0 -> H0

H
0 t

ru
e

H
1 t

ru
e

Type I error
α-risk

False positive

Type II error
β-risk

False negative

Correct decision
Power = 1-β
True positive

Correct decision
Confidence interval = 1-α

True negative



9/ 48

Introduction
Hypothetical tests

Conclusion

Historical generalities
Statistical notions
Remarks

Statistical notion #3

α & β risks
In the case of bilateral test where the statistic distribution is
symetric
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Statistical notion #3

α & β risks
In the case of bilateral test where the statistic distribution is
symetric
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Statistical notion #4

P-value : level of significance.
This is the probability the difference observed in population
is the same than in the samples.
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Statistical notion #5

Degree of freedom : the number of values in the final
calculation of a statistic that are free to vary.
Without estimation, each value can take on any number→
Each value is completely free to vary
n = sample size
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β risk
Interpretations
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Probability distributions - Plan

Generalities
Binomial & Bernoulli
Poisson
Exponential
Normal & log-normal
Gamma & Chi-squared
Normal
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Generalities

Random variable X : Ω→ R

Law of probability of a random variable : allow us to know
occurrences of values of a variable X.
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Bernoulli

Bernoulli distribution : a random draw
X ∼ Bern(p) with p the probability of success on n draws
Success or failure with p the probability of success for one draw.
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Binomial

Binomial distribution : n random draw
X ∼ Binom(p,n) with p the probability of success on n independent attempts
Success or failure with p the probability of success for n draw. This test represent a
characteristic in a sample.

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

n=50, prob=0.1

draw nb

fr
eq

eu
nc

y



17/ 48

Introduction
Hypothetical tests

Conclusion

Probability distributions
Hypothesis tests for normal data

Poisson

Poisson distribution : for rare events

X ∼ Pois(λ) with λ = Mean = Variance
For discrete variable. This is the continue version of Bernoulli law.
Example : counting of UFC in some petri dish containing antibiotics
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Exponential

Exponential distribution : lifetime without aging

X ∼ Exp(λ) with λ the mean nb of event per time or volume unit
Memoryless
Example : Radioactive disintegration

Exponential distribution, rate=5
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Gamma

Gamma distribution : sum of exponential distributions

X ∼ Gamma(α,λ) with α the nb of added variables
Example : optimal staff in a call center
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Normal

Normal distribution : most famous in statistics

X ∼ N(µ,σ) with µ the mean and σ the standard deviation
Example : size
Useful when the distribution is reduced centered :

Z score =
X − µ

σ
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Comparison of two means
Comparison of frequencies
Linear correlation
F-test of equality of variances
Conditions
Abuses



22/ 48

Introduction
Hypothetical tests

Conclusion

Probability distributions
Hypothesis tests for normal data

Comparison of two means

Student test

Student law is a symmetric law with heavier tails than normal
law for weak df
The decision variable t follow a Student law with n1 + n2 - 2 df.
X ∼ T(µ,σ,ν) with µ the mean, σ the variance and ν the degree
of freedom
H0 : µ1 = µ2
H1 : ∃ a value ∆ 6= 0 for µ1 - µ2 = ∆
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Comparison of two means

Student test
> t.test(dataBWT,a)

Welch Two Sample t-test

data: dataBWT and a

t = 0.36582, df = 375.05, p-value = 0.7147

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-123.1589 179.4599

sample estimates:

mean of x mean of y

2944.656 2916.506
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Comparison of two means

Student test
> t.test(dataBWT,dataBTW2)

Welch Two Sample t-test

data: dataBWT and dataBWT2

t = -13.878, df = 189.52, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-13231.050 -9937.866

sample estimates:

mean of x mean of y

2944.656 14529.114
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Comparison of frequencies

For proportion to a reference

H0 : p0 = p1
H1 : p1 ≤ p0
condition : np0 and n(1-p0) ≥ 5
> prop.test(x, n, p, alternative = c("two.sided", "less", "greater"))

Ex : Test if the proportion of pregnant women ≤ 25 years and HIV+ is equal to 0.1%.
We would like to know if this prevalence is lower than the theoretical proportion p0 = 0.1

HIV - HIV +

10137
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Comparison of frequencies

For proportion to a reference
> prop.test(10,147, p = 0.1,alternative = "less")

1-sample proportions test without continuity correction

data: 10 out of 147, null probability 0.1

X-squared = 1.6697, df = 1, p-value = 0.09815

alternative hypothesis: true p is less than 0.1

95 percent confidence interval:

0.000000 0.110572

sample estimates:

p

0.06802721

Conclusion : we can’t respond positively at the question with a
chosen risk α.
We can make a binomial test for lower samples
> binom.test(10,147,0.1,alternative = "less")

In this case the result is not different
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Comparison of frequencies

Between two proportions
H0 : p1 = p2
H1 : p1 6= p2
condition : n1p, n1(1-p), n2p and n2(1-p) ≥ 5
with

p =
n1p1 + n2p2

n1 + n2
> prop.test(tableau)

Ex : Test if the mother treatment change the HIV status of the baby. To do that we
compare with the test the proportions of baby HIV+ with a mother under treatment or
not
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Comparison of frequencies

Between two proportions

H0 : p1 = p2
H1 : p1 6= p2

> prop.test(table)

2-sample test for equality of proportions without continuity correction

data: table

X-squared = 3.7574, df = 1, p-value = 0.05257

alternative hypothesis: two.sided

95 percent confidence interval:

-0.0004122543 0.1715013839

sample estimates:

prop 1 prop 2

0.2979798 0.2124352

With the chosen α risk this is not possible to show that the
treatment have an effect on the HIV status of babies
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Comparison of frequencies

Between two variables : X 2 of independence

H0 : The two variables are independant
H1 : The two variables are dependant
condition : All theoretical class size ≥ 5

With the same example as before
> chisq.test(table)

Pearson’s Chi-sqared test

data: table

X-squared = 3.7574, df = 1, p-value = 0.05257

The result is the same
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Comparison of frequencies

X ∼ Gamma(k=ν/2,σ=2) equivalent to X ∼ X 2(ν) with ν the
df.
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Linear correlation

Pearson test
H0 : r = 0
H1 : r 6= 0 with r the correlation coefficient between two
quantitative variables X and Y
This value is an indicator of the point cloud elongation. The
more |r| is near from 1, the more points are line up.
Condition : X and Y have to follow a Normal bivariate law
(elliptical point cloud)
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Pearson test
H0 : r = 0
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Condition : X and Y have to follow a Normal bivariate law
(elliptical point cloud)



31/ 48

Introduction
Hypothetical tests

Conclusion

Probability distributions
Hypothesis tests for normal data

Linear correlation

Pearson test

H0 : r = 0
H1 : r 6= 0 with r the correlation coefficient between two
quantitative variables X and Y
This value is an indicator of the point cloud elongation. The
more |r| is near from 1, the more points are line up.
Condition : X and Y have to follow a Normal bivariate law
(elliptical point cloud)

> cor.test(x, y, method = c("pearson", "kendall", "spearman"))

Here we would like to know if a linear correlation exists
between size and weight of children.
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Linear correlation

Pearson test
H0 : r = 0
H1 : r 6= 0
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Linear correlation

Pearson test

H0 : r = 0
H1 : r 6= 0
cor.test(datapoids,datataille,method="pearson")

Pearson’s product-moment correlation

data: datapoids and datataille

t = 13.433, df = 150, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.6570527 0.8036174

sample estimates:

cor

0.7389562
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Linear correlation

Pearson test

R calculated r=0.7389562 with a weak p-value : 2.2e-16. With a
chosen α risk (0.01 for exemple), we can conclude that a linear
association between these two variable exists.
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Linear correlation

Be careful, a correlation between two observed variables
does not necessarily a cause and effect relationship !
Pearson is highly influenced by extreme values.
You have to see the plot between the two variables before
starting the test.



36/ 48

Introduction
Hypothetical tests

Conclusion

Probability distributions
Hypothesis tests for normal data

F-test of equality of variances

Fisher-Snedecor

Fisher test is the ratio between the two corrected variances
following a FS law at (n1-1,n2-1) df
H0 : σ1 = σ2
H1 : ∃ a value ∆ 6= 0 for σ1 - σ2 = ∆

> var.test(dataBWT,dataBWT2)

F test to compare two variances

data: dataBWTanddataBWT2
F = 0.004052, num df = 188, denom df = 188, p-value < 2.2e-16

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.003041773 0.005397621

sample estimates:

ratio of variances

0.004051955
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F-test of equality of variances

Fisher-Snedecor

Fisher test is the ratio between the two corrected variances
following a FS law at (n1-1,n2-1) df
H0 : σ1 = σ2
H1 : ∃ a value ∆ 6= 0 for σ1 - σ2 = ∆

> var.test(dataBWT,a)

F test to compare two variances

data: dataBWT and a

F = 0.90436, num df = 188, denom df = 188, p-value = 0.4914

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.6788951 1.2046983

sample estimates:

ratio of variances

0.9043582
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Conditions

These tests are the strongest tests (high 1-β) only if data
follows certain conditions

Normality : data follows normal law
Homoscedasticity : equality of variances (F-test)
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Control the normality of your data

Histogram
Boxplot
qqplot
Skewness & Kustosis
Shapiro test
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Control the normality of your data

Histogram
> hist(dataBWT,freq=F)

> den<-density(dataBWT)

> lines(den,col="red")

Histogram of data$BWT

data$BWT
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Control the normality of your data

Boxplot
> boxplot(dataBWT ∼ dataSMOKE,xlab="SMOKE",ylab="BWT",main="Boxplot")
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Control the normality of your data

Boxplot
> boxplot(dataBWT2 ∼
dataSMOKE,xlab="SMOKE",ylab="BWT2",main="Boxplot2")
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Control the normality of your data

QQ-plot
”Droite de Henry” is represented in red = a line to a?theoretical ?, by default normal,
quantile-quantile plot which passes through the probs quantiles, by default the first and
third quartiles.
> qqnorm(dataBWT)

> qqline(dataBWT,col="red")
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Control the normality of your data

Skewness & Kurtosis
> library(e1071)

> skewness(dataBWT) -0.2068467

> kurtosis(dataBWT) -0.1413488
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Control the normality of your data

Shapiro-Wilk
> shapiro.test(dataBWT)

Shapiro-Wilk normality test

data: dataBWT

W = 0.99247, p-value = 0.4383
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Control the normality of your data

Example : other distribution
> shapiro.test(dataBWT2)

Shapiro-Wilk normality test

data: dataBWT2

W = 0.78418, p-value = 2.038e-15
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Non-parametric tests

If data doesn’t follow these two conditions (Normality &/or
Homoscedasticity) you have to use other tests, less strong.
Non-parametric tests make no assumptions about probability
distributions and are based on the ranks of observations.

To compare two means : Wilcoxon test also called
Mann-Whitney test

> wilcox.test(x, y)

To test a linear correlation : Spearman test
> cor.test(x,y,method="spearman")
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Abuses

When we performed a multiple test, we have to make a
correction of α risk (Bonferroni, Tukey...)
Main mistakes are due to a wrong choice of the statistical
test. You have to think about the biological question,
hypothesis and check if your data satisfy the conditions of
tests.
Don’t abuse of p-value : observe your data before starting
a test, the p-value is not very informative. The confidence
intervalle is often more informative.
The more tests we performed, the more we expect
significant results by chance.
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Hypothesis test is like a safeguard that prevent the biologist to
early conclude without evidences.



Thank you !
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