Statical tests

Anissa Guillemin

15 mars 2017

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三 ○ ○ ○ ○ 1/48

Historical generalities Statistical notions Remarks

Historical generalities

- Hypothesis Tests
- Bayesian statistics

Historical generalities : "Frequentists"

• Hypothesis Tests \rightarrow we reject or not H_0 with a α risk

Introduction Historical generalities Hypothetical tests Statistical notions Conclusion Remarks

Historical generalities : "Bayesian"

Bayesian statistics

Bayes theorem :

posterior probability = likelihood \times prior probability

→ Ξ ► < Ξ ►</p>

Historical generalities Statistical notions Remarks

Statistical notion #1

- Descriptive statistics \rightarrow data visualisation
- Inferential statistics \rightarrow to draw conclusions about the entire population from samples

Historical generalities Statistical notions Remarks

Statistical notion #2

A test is a rule to decide between H_0 or H_1 hypothesis. We compute a statistics and compare it to a decisional threshold; if the value of statistics is \leq threshold, observe such a value is too less likely considering the risk we are ready to take.

Historical generalities Statistical notions Remarks

Statistical notion #2

• Hypothesis *H*₀ : null hypothesis

The observed differences are not different from random fluctuations

This is H_0 hypothesis that is controlled during the test

Historical generalities Statistical notions Remarks

Statistical notion #2

- Hypothesis *H*₀ : null hypothesis
- The observed differences are not different from random fluctuations
- This is H_0 hypothesis that is controlled during the test
 - Hypothesis H₁ : alternative hypothesis
- Negation of H_0 hypothesis

Be careful with test conclusions : accept $H_0 \neq H_0$ is true. We can only reject or not H_0 , never accept it !

Historical generalities Statistical notions Remarks

Image: Image:

э

▶ < ⊒ >

Statistical notion #3

• $\alpha \& \beta$ risks

		Decision		
		Reject H ₀ -> H ₁	«Accept» H ₀ -> H ₀	
Actual	H _o true	Type I error α-risk False positive	Correct decision Confidence interval = 1-α True negative	
	H ₁ true	Correct decision Power = 1-β True positive	Type II error β-risk False negative	

Historical generalitie Statistical notions Remarks

Statistical notion #3

α & β risks

In the case of bilateral test where the statistic distribution is symetric

Statistical notions Remarks

Statistical notion #3

• α & β risks

In the case of bilateral test where the statistic distribution is symetric

Statistical notion #4

 P-value : level of significance. This is the probability the difference observed in population is the same than in the samples.

Introduction Histor Hypothetical tests Statis Conclusion Rema

Historical generalitie Statistical notions Remarks

Statistical notion #5

- Degree of freedom : the number of values in the final calculation of a statistic that are free to vary.
 Without estimation, each value can take on any number → Each value is completely free to vary
- n = sample size

	Introduction Hypothetical tests Conclusion	Historical generalities Statistical notions Remarks	
Remarks			

- β risk
- Interpretations

Probability distributions Hypothesis tests for normal data

Probability distributions - Plan

- Generalities
- Binomial & Bernoulli
- Poisson
- Exponential
- Normal & log-normal
- Gamma & Chi-squared
- Normal

Probability distributions Hypothesis tests for normal data

Generalities

- Random variable X : $\Omega \to \mathbb{R}$
- Law of probability of a random variable : allow us to know occurrences of values of a variable X.

Probability distributions Hypothesis tests for normal data

Bernoulli

• Bernoulli distribution : a random draw

 $X \sim Bern(p) \mbox{ with } p \mbox{ the probability of success on } n \mbox{ draws} \\ Success \mbox{ or failure with } p \mbox{ the probability of success for one draw.}$

Probability distributions Hypothesis tests for normal data

Binomial

Binomial distribution : n random draw

 $X \sim Binom(p,n)$ with p the probability of success on n independent attempts Success or failure with p the probability of success for n draw. This test represent a characteristic in a sample.

Probability distributions Hypothesis tests for normal data

Poisson

• Poisson distribution : for rare events

 $X \sim Pois(\lambda)$ with $\lambda = Mean = Variance$ For discrete variable. This is the continue version of Bernoulli law. Example : counting of UFC in some petri dish containing antibiotics

Probability distributions Hypothesis tests for normal data

Exponential

• Exponential distribution : lifetime without aging

 $X\sim Exp(\lambda)$ with λ the mean nb of event per time or volume unit Memoryless Example : Radioactive disintegration

Probability distributions Hypothesis tests for normal data

Gamma

Gamma distribution : sum of exponential distributions

 $X \sim Gamma(\alpha, \lambda)$ with α the nb of added variables Example : optimal staff in a call center

Gamma distributions with different shape values

▲□▶▲@▶▲≧▶▲≧▶ 差 のへの -

Probability distributions Hypothesis tests for normal data

Normal

Normal distribution : most famous in statistics

 ${\rm X} \sim {\rm N}(\mu, \sigma)$ with μ the mean and σ the standard deviation Example : size

Useful when the distribution is reduced centered :

$$\mathsf{Z} \operatorname{score} = \frac{\mathsf{X} - \mu}{\sigma}$$

Probability distributions Hypothesis tests for normal data

- Comparison of two means
- Comparison of frequencies
- Linear correlation
- F-test of equality of variances
- Conditions
- Abuses

Probability distributions Hypothesis tests for normal data

Comparison of two means

Student test

Student law is a symmetric law with heavier tails than normal law for weak df

The decision variable t follow a Student law with $n_1 + n_2 - 2$ df. X ~ T(μ,σ,ν) with μ the mean, σ the variance and ν the degree of freedom

 $\begin{array}{l} H_0: \mu_1 = \mu_2 \\ H_1: \exists \text{ a value } \Delta \neq 0 \text{ for } \mu_1 - \mu_2 = \Delta \end{array} \end{array}$

Probability distributions Hypothesis tests for normal data

Comparison of two means

Student test

```
> t.test(dataBWT,a)
Welch Two Sample t-test
data: dataBWT and a
t = 0.36582, df = 375.05, p-value = 0.7147
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-123.1589 179.4599
sample estimates:
mean of x mean of y
2944.656 2916.506
```

Probability distributions Hypothesis tests for normal data

Comparison of two means

Student test

> t.test(dataBWT,dataBTW2)
Welch Two Sample t-test
data: dataBWT and dataBWT2
t = -13.878, df = 189.52, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-13231.050 -9937.866
sample estimates:
mean of x mean of y
2944.656 14529.114</pre>

Probability distributions Hypothesis tests for normal data

Comparison of frequencies

• For proportion to a reference

```
 \begin{array}{l} H_0: p_0 = p_1 \\ H_1: p_1 \leq p_0 \\ \text{condition}: np_0 \text{ and } n(1-p_0) \geq 5 \\ \text{> prop.test(x, n, p, alternative = c("two.sided", "less", "greater"))} \end{array}
```

Ex : Test if the proportion of pregnant women \leq 25 years and HIV+ is equal to 0.1%. We would like to know if this prevalence is lower than the theoretical proportion $p_0 = 0.1$

HIV -	HIV +
137	10

Probability distributions Hypothesis tests for normal data

Comparison of frequencies

For proportion to a reference

```
> prop.test(10,147, p = 0.1,alternative = "less")
1-sample proportions test without continuity correction
data: 10 out of 147, null probability 0.1
X-squared = 1.6697, df = 1, p-value = 0.09815
alternative hypothesis: true p is less than 0.1
95 percent confidence interval:
0.000000 0.110572
sample estimates:
p
0.06802721
```

Probability distributions Hypothesis tests for normal data

Comparison of frequencies

For proportion to a reference

```
> prop.test(10,147, p = 0.1,alternative = "less")
1-sample proportions test without continuity correction
data: 10 out of 147, null probability 0.1
X-squared = 1.6697, df = 1, p-value = 0.09815
alternative hypothesis: true p is less than 0.1
95 percent confidence interval:
0.000000 0.110572
sample estimates:
p
0.06802721
```

Conclusion : we can't respond positively at the question with a chosen risk α .

We can make a binomial test for lower samples

```
> binom.test(10,147,0.1,alternative = "less")
```

In this case the result is not different

Probability distributions Hypothesis tests for normal data

Comparison of frequencies

Between two proportions

 $H_0: p_1 = p_2$ $H_1: p_1 \neq p_2$ condition: $n_1 p$, $n_1(1-p)$, $n_2 p$ and $n_2(1-p) \ge 5$ with $p_1 p_1 = p_2$

$$p = \frac{n1p1 + n2p2}{n1 + n2}$$

> prop.test(tableau)

 Ex : Test if the mother treatment change the HIV status of the baby. To do that we compare with the test the proportions of baby HIV+ with a mother under treatment or not

	Baby HIV+/-			
	HIV -		HIV +	
reated	÷	139	59	
Mother t or r	+ L	152	41	

Probability distributions Hypothesis tests for normal data

Comparison of frequencies

Between two proportions

 $H_0: p_1 = p_2$ $H_1: p_1 \neq p_2$

> prop.test(table)
2-sample test for equality of proportions without continuity correction
data: table
X-squared = 3.7574, df = 1, p-value = 0.05257
alternative hypothesis: two.sided
95 percent confidence interval:
-0.0004122543 0.1715013839
sample estimates:
prop 1 prop 2
0.2979798 0.2124352
With the chosen α risk this is not possible to show that the
treatment have an effect on the HIV status of babies

Probability distributions Hypothesis tests for normal data

Comparison of frequencies

- Between two variables : X² of independence
- H_0 : The two variables are independent H_1 : The two variables are dependent condition : All theoretical class size ≥ 5

```
With the same example as before

> chisq.test(table)

Pearson's Chi-sqared test

data: table

X-squared = 3.7574, df = 1, p-value = 0.05257

The result is the same
```

Introduction Hypothetical tests Conclusion Probability distributions Hypothesis tests for normal data

Comparison of frequencies

X ~ Gamma(k=ν/2,σ=2) equivalent to X ~ X²(ν) with ν the df.

Gamma distributions with different shape values

Probability distributions Hypothesis tests for normal data

Linear correlation

Pearson test

 H_0 : r = 0

 H_1 : r \neq 0 with r the correlation coefficient between two quantitative variables X and Y

This value is an indicator of the point cloud elongation. The more |r| is near from 1, the more points are line up. Condition : X and Y have to follow a Normal bivariate law (elliptical point cloud)

Probability distributions Hypothesis tests for normal data

Linear correlation

Pearson test

 H_0 : r = 0

 H_1 : r \neq 0 with r the correlation coefficient between two quantitative variables X and Y

This value is an indicator of the point cloud elongation. The more |r| is near from 1, the more points are line up. Condition : X and Y have to follow a Normal bivariate law (elliptical point cloud)

Probability distributions Hypothesis tests for normal data

Linear correlation

Pearson test

 H_0 : r = 0 H_1 : r \neq 0 with r the correlation coefficient between two quantitative variables X and Y This value is an indicator of the point cloud elongation. The more |r| is near from 1, the more points are line up. Condition : X and Y have to follow a Normal bivariate law (elliptical point cloud)

```
> cor.test(x, y, method = c("pearson", "kendall", "spearman"))
```

Here we would like to know if a linear correlation exists between size and weight of children.

Probability distributions Hypothesis tests for normal data

Linear correlation

- Pearson test
- $\begin{array}{l} H_0: r=0\\ H_1: r\neq 0 \end{array}$

Hypothesis tests for normal data

Linear correlation

Pearson test

 H_0 : r = 0 H_1 : r \neq 0 cor.test(datapoids,datataille,method="pearson") Pearson's product-moment correlation data: datapoids and datataille t = 13.433, df = 150, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.6570527 0.8036174 sample estimates: cor 0.7389562

Probability distributions Hypothesis tests for normal data

Linear correlation

Pearson test

R calculated r=0.7389562 with a weak p-value : 2.2e-16. With a chosen α risk (0.01 for exemple), we can conclude that a linear association between these two variable exists.

Probability distributions Hypothesis tests for normal data

Linear correlation

- Be careful, a correlation between two observed variables does not necessarily a cause and effect relationship!
- Pearson is highly influenced by extreme values.
- You have to see the plot between the two variables before starting the test.

F-test of equality of variances

• Fisher-Snedecor

Fisher test is the ratio between the two corrected variances following a FS law at (n_1-1, n_2-1) df $H_0: \sigma_1 = \sigma_2$ $H_1: \exists$ a value $\Delta \neq 0$ for $\sigma_1 - \sigma_2 = \Delta$

> var.test(dataBWT,dataBWT2)
F test to compare two variances
data: dataBWTanddataBWT2
F = 0.004052, num df = 188, denom df = 188, p-value < 2.2e-16
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.003041773 0.005397621
sample estimates:
ratio of variances
0.004051955</pre>

F-test of equality of variances

Fisher-Snedecor

Fisher test is the ratio between the two corrected variances following a FS law at (n_1-1, n_2-1) df H_0 : $\sigma_1 = \sigma_2$ H_1 : \exists a value $\Delta \neq 0$ for $\sigma_1 - \sigma_2 = \Delta$ > var.test(dataBWT,a) F test to compare two variances data: dataBWT and a F = 0.90436, num df = 188, denom df = 188, p-value = 0.4914 alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: 0.6788951 1.2046983 sample estimates:

ratio of variances

0.9043582

Probability distributions Hypothesis tests for normal data

These tests are the strongest tests (high $1-\beta$) only if data follows certain conditions

- Normality : data follows normal law
- Homoscedasticity : equality of variances (F-test)

Probability distributions Hypothesis tests for normal data

Control the normality of your data

- Histogram
- Boxplot
- qqplot
- Skewness & Kustosis
- Shapiro test

Probability distributions Hypothesis tests for normal data

Control the normality of your data

Histogram

- > hist(dataBWT,freq=F)
- > den<-density(dataBWT)</pre>
- > lines(den,col="red")

121 2 140 39/

Probability distributions Hypothesis tests for normal data

Control the normality of your data

Boxplot

> boxplot(dataBWT ~ dataSMOKE,xlab="SMOKE",ylab="BWT",main="Boxplot")

Probability distributions Hypothesis tests for normal data

Control the normality of your data

Boxplot

> boxplot(dataBWT2 \sim

dataSMOKE,xlab="SMOKE",ylab="BWT2",main="Boxplot2")

SMOKE

Control the normality of your data

QQ-plot

"Droite de Henry" is represented in red = a line to a ?theoretical ?, by default normal, quantile-quantile plot which passes through the probs quantiles, by default the first and third quartiles.

- > qqnorm(dataBWT)
- > qqline(dataBWT,col="red")

Probability distributions Hypothesis tests for normal data

Control the normality of your data

Skewness & Kurtosis

- > library(e1071)
- > skewness(dataBWT) -0.2068467
- > kurtosis(dataBWT) -0.1413488

Probability distributions Hypothesis tests for normal data

Control the normality of your data

Shapiro-Wilk

> shapiro.test(dataBWT)
Shapiro-Wilk normality test
data: dataBWT
W = 0.99247, p-value = 0.4383

Probability distributions Hypothesis tests for normal data

Control the normality of your data

Example : other distribution

> shapiro.test(dataBWT2)
Shapiro-Wilk normality test
data: dataBWT2
W = 0.78418, p-value = 2.038e-15

Probability distributions Hypothesis tests for normal data

Non-parametric tests

If data doesn't follow these two conditions (Normality &/or Homoscedasticity) you have to use other tests, less strong. Non-parametric tests make no assumptions about probability distributions and are based on the ranks of observations.

- To compare two means : Wilcoxon test also called Mann-Whitney test
- > wilcox.test(x, y)
 - To test a linear correlation : Spearman test
- > cor.test(x,y,method="spearman")

Probability distributions Hypothesis tests for normal data

Abuses

- When we performed a multiple test, we have to make a correction of *α* risk (Bonferroni, Tukey...)
- Main mistakes are due to a wrong choice of the statistical test. You have to think about the biological question, hypothesis and check if your data satisfy the conditions of tests.
- Don't abuse of p-value : observe your data before starting a test, the p-value is not very informative. The confidence intervalle is often more informative.
- The more tests we performed, the more we expect significant results by chance.

Hypothesis test is like a safeguard that prevent the biologist to early conclude without evidences.

Thank you!

