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mRNA level measurements

Microarrays:
fluorescence level
continuous measurement

Xij ∼ N (µ, σ)

for genes i in condition j, µ is the average of the signal and σ it’s dispersion.

RNASeq:
number of reads
discreet measurement

Xij ∼ P(µ)

µ is the number of reads transcribed from the genes i in condition j by unit of time.
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Counts distributions
P(X = x) for P(µ)
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X ~ Pois(µ)

µ the rate of reads production is equal to the variability in the number of reads.

We often have more variability! (broader distributions)
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Counts distributions
P(X = x) for NB(µ, σ)
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Counts distributions
P(X = x) for NB(µ, σ)
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Counts distributions
P(X = x) for NB(µ, σ)
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DESeq2 model: size factors

The observed counts are modeled as following:

Kij ∼ NB(µij, αi)

for genes i ∈ {1, . . . ,n} in condition j ∈ {1, . . . ,m}, with:

µij = sjqij

with sj the size factor of replicate j and qij proportional to the number of cDNA fragments.
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DESeq2 model: dispersion

The size factors are computed as following:

sj = median
i

Kij
KR

i

with

KR
i =

 m∏
j=1

Kij

 1
m
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DESeq2 model

The observed counts are modeled as following:

Kij ∼ NB(µij, αi)

Var(Kij) = µij + αiµ2
ij

logαi ∼ N (� logαtr(µ̄i), σ
2
d)

with:
µ̄i =

1

m
∑

j

Kij
sij

and:
αtr(µ̄) =

a1
µ̄

+ α0

laurent.modolo@ens-lyon.fr Club BioStats 13 14 / 20



DESeq2 model: dispersion

1 MLE computation of each genes αgw
i

black dots
extremely noisy (low number of
replicates)
would compromise the accuracy of the
analysis if used direclty

2 fit a smooth curve for the dispersion trend
αtr(µ̄)

3 compute αi by MAP using αtr(µ̄)

4 keep αgw
i for genes more than 2 residual

standard deviations above the curve.
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DESeq2 model: dispersion

1 MLE computation of each genes αgw
i

2 fit a smooth curve for the dispersion trend
αtr(µ̄)

red line
share information across genes
high dependence between α and µ for
low counts
asymptotic dispersion of α0

3 compute αi by MAP using αtr(µ̄)

4 keep αgw
i for genes more than 2 residual

standard deviations above the curve.
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DESeq2 model: dispersion

1 MLE computation of each genes αgw
i

2 fit a smooth curve for the dispersion trend
αtr(µ̄)

3 compute αi by MAP using αtr(µ̄)
blue arrow
shrink αgw

i toward αtr(µ̄)
shrinkage decreases with the distance to
αtr(µ̄)
shrinkage decreases with the degree of
freedom

4 keep αgw
i for genes more than 2 residual

standard deviations above the curve.
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DESeq2 model: dispersion

1 MLE computation of each genes αgw
i

2 fit a smooth curve for the dispersion trend
αtr(µ̄)

3 compute αi by MAP using αtr(µ̄)

4 keep αgw
i for genes more than 2 residual

standard deviations above the curve.
blue circles
decreases false positives
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DESeq2 model: hypothesis testing

The observed counts are modeled as following:

Kij ∼ NB(µij, αi)

for genes i ∈ {1, . . . ,n} in condition
j ∈ {1, . . . ,m}, with:

µij = sjqij

with sj the size factor of replicate j and qij
proportional to the number of cDNA
fragments.

Each gene can be analysed with the following
GLM:

log qij =
∑

r
xjrβir

with xr a factor (treated or control) and βr the
corresponding coefficient.
The use of linear models, however, provides the
flexibility to also analyze more complex designs
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DESeq2 model: LFCs

The same MAP approach is used to compute
the LFCs

1 MLE estimage of the LFCs
2 fit a zero centred Gaussian overs the LFCs
3 compute final LFCs by MAP

shrinkage is stronger for genes with low
information
low counts
high dispersion
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DESeq2 model
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DESeq2 model: hypothesis testing
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Thank you
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