DESeq2

Laurent Modolo

March 16 2018

Table of Contents

1 mRNA level measurements

2 Counts distributions

Table of Contents

1 mRNA level measurements

2 Counts distributions

mRNA level measurements

Microarrays:

- fluorescence level
- continuous measurement

$$X_{ij} \sim \mathcal{N}(\mu, \sigma)$$

for genes i in condition j, μ is the average of the signal and σ it's dispersion.

RNASeq:

- number of reads
- discreet measurement

$$X_{ij} \sim \mathcal{P}(\mu)$$

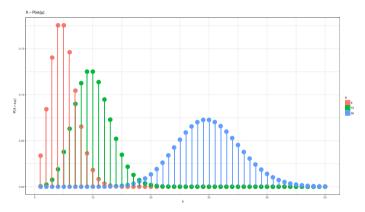
 μ is the number of reads transcribed from the genes i in condition j by unit of time.

Table of Contents

1 mRNA level measurements

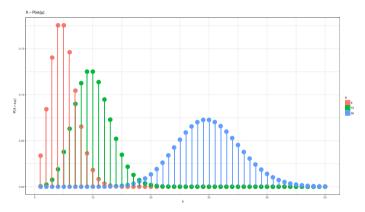
2 Counts distributions

Counts distributions P(X = x) for $\mathcal{P}(\mu)$



 μ the rate of reads production is equal to the variability in the number of reads.

Counts distributions P(X = x) for $\mathcal{P}(\mu)$

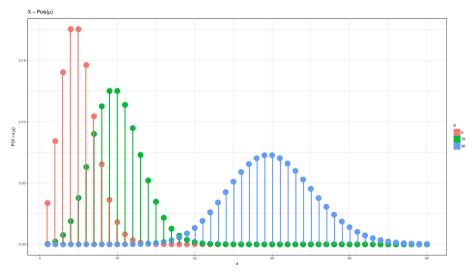


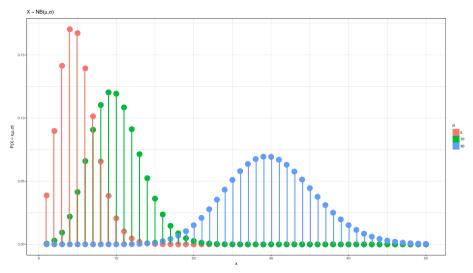
 μ the rate of reads production is equal to the variability in the number of reads.

We often have more variability! (broader distributions)

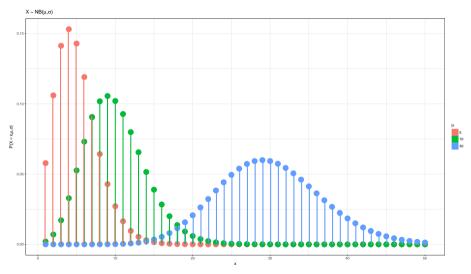
laurent.modolo@ens-lyon.fr

Club BioStats 13





Club BioStats 13



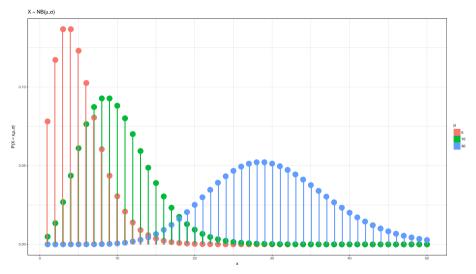


Table of Contents

1 mRNA level measurements

2 Counts distributions

The observed counts are modeled as following:

 $K_{ij} \sim \mathcal{NB}(\mu_{ij}, \alpha_i)$ for genes $i \in \{1, \dots, n\}$ in condition $j \in \{1, \dots, m\}$, with:

The observed counts are modeled as following:

 $K_{ij} \sim \mathcal{NB}(\mu_{ij}, \alpha_i)$ for genes $i \in \{1, \dots, n\}$ in condition $j \in \{1, \dots, m\}$, with:

 $\mu_{ij} = s_j q_{ij}$

with s_j the size factor of replicate j and q_{ij} proportional to the number of cDNA fragments.

The size factors are computed as following:

$$s_j = median rac{K_{ij}}{K_i^R}$$

with

$$K_i^R = \left(\prod_{j=1}^m K_{ij}\right)^{\frac{1}{m}}$$

DESeq2 model

The observed counts are modeled as following:

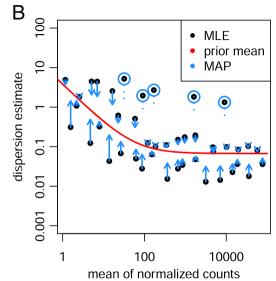
$$K_{ij} \sim \mathcal{NB}(\mu_{ij}, \alpha_i)$$
$$Var(K_{ij}) = \mu_{ij} + \alpha_i \mu_{ij}^2$$
$$\log \alpha_i \sim \mathcal{N}(\log \alpha_{tr}(\bar{\mu}_i), \sigma_d^2)$$

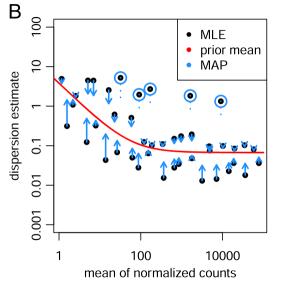
with:

$$\bar{\mu}_i = \frac{1}{m} \sum_j \frac{K_{ij}}{s_{ij}}$$

and:

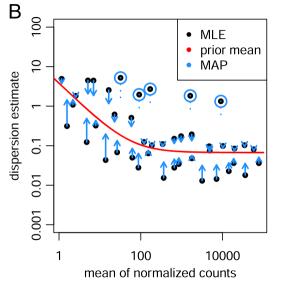
$$\alpha_{tr}(\bar{\mu}) = \frac{a_1}{\bar{\mu}} + \alpha_0$$



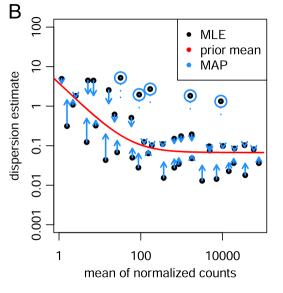


1 MLE computation of each genes α_i^{gw}

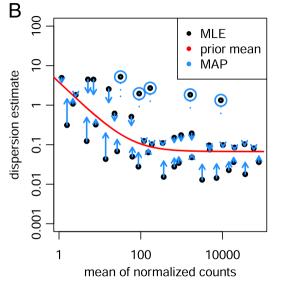
- black dots
- extremely noisy (low number of replicates)
- would compromise the accuracy of the analysis if used directly
- 2 fit a smooth curve for the dispersion trend $\alpha_{tr}(\bar{\mu})$
- **3** compute α_i by MAP using $\alpha_{tr}(\bar{\mu})$
- 4 keep α_i^{gw} for genes more than 2 residual standard deviations above the curve.



- **1** MLE computation of each genes α_i^{gw}
- 2 fit a smooth curve for the dispersion trend $\alpha_{tr}(\bar{\mu})$
 - red line
 - share information across genes
 - high dependence between α and μ for low counts
 - \blacksquare asymptotic dispersion of α_0
- **3** compute α_i by MAP using $\alpha_{tr}(\bar{\mu})$
- 4 keep α_i^{gw} for genes more than 2 residual standard deviations above the curve.



- **1** MLE computation of each genes α_i^{gw}
- 2 fit a smooth curve for the dispersion trend $\alpha_{tr}(\bar{\mu})$
- **3** compute α_i by MAP using $\alpha_{tr}(\bar{\mu})$
 - blue arrow
 - shrink α_i^{gw} toward $\alpha_{tr}(\bar{\mu})$
 - shrinkage decreases with the distance to $\alpha_{tr}(\bar{\mu})$
 - shrinkage decreases with the degree of freedom
- 4 keep α_i^{gw} for genes more than 2 residual standard deviations above the curve.



- **1** MLE computation of each genes α_i^{gw}
- 2 fit a smooth curve for the dispersion trend $\alpha_{tr}(\bar{\mu})$
- **3** compute α_i by MAP using $\alpha_{tr}(\bar{\mu})$
- 4 keep α_i^{gw} for genes more than 2 residual standard deviations above the curve.
 - blue circles
 - decreases false positives

DESeq2 model: hypothesis testing

The observed counts are modeled as following:

$$K_{ij} \sim \mathcal{NB}(\mu_{ij}, \alpha_i)$$

for genes $i \in \{1, \dots, n\}$ in condition $j \in \{1, \dots, m\},$ with:

$$\mu_{ij} = s_j q_{ij}$$

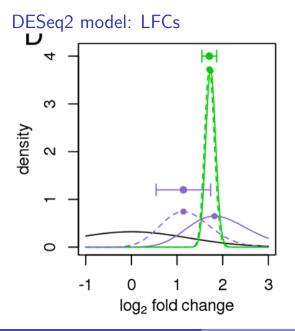
with s_j the size factor of replicate j and q_{ij} proportional to the number of cDNA fragments.

Each gene can be analysed with the following $\mathsf{GLM}:$

$$\log q_{ij} = \sum_{r} x_{jr} \beta_{ir}$$

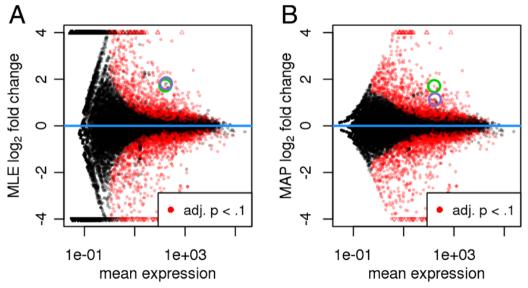
with x_r a factor (treated or control) and β_r the corresponding coefficient.

The use of linear models, however, provides the flexibility to also analyze more complex designs

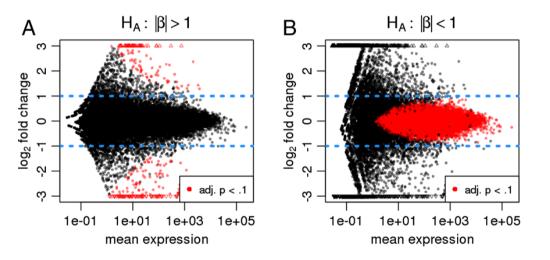


The same MAP approach is used to compute the LFCs

- **1** MLE estimage of the LFCs
- 2 fit a zero centred Gaussian overs the LFCs
- **3** compute final LFCs by MAP
 - shrinkage is stronger for genes with low information
 - Iow counts
 - high dispersion



DESeq2 model: hypothesis testing



Thank you

DOI10.1186/s13059-014-0550-8