
Random Forest

Nicolas Fontrodona

LBMC, ENS de Lyon, site Monod

December 5, 2018

1

Definition / Application

A Random Forest is a machine learning
algorithm used to make predictions.

I Introduced by Leo Breiman (2001)

Applications

Medicine Bank Image processing

Fontrodona Nicolas | Random Forest

2

Definition / Application

A Random Forest is a machine learning
algorithm used to make prediction.

I Introduced by Leo Breiman (2001)
I It works by constructing a multitude

of decision trees and uses them to
make predictions

But what is exactly a decision tree ?

Fontrodona Nicolas | Random Forest

2

Definition / Application

A Random Forest is a machine learning
algorithm used to make prediction.

I Introduced by Leo Breiman (2001)
I It works by constructing a multitude

of decision trees and uses them to
make predictions

But what is exactly a decision tree ?

Fontrodona Nicolas | Random Forest

3

Decision Trees

Decision trees
I Help to take decisions / to make predictions
I Tree-like graph
I Decisions are located on the leaves of the tree
I Are build with training data

I Target variable : variable that we want to predict
I Predictor variable(s) : variable(s) used for the

predictions
I Used for data exploration in many fields

Or in every-day life ...

Sunny

Athletic ?

Yes

Run Walk

Rainy

No Yes

Cinema Board games

No

Good movies
curently ?

Weather ?

Fontrodona Nicolas | Random Forest

3

Decision Trees

Decision trees
I Help to take decisions / to make predictions
I Tree-like graph
I Decisions are located on the leaves of the tree
I Are build with training data

I Target variable : variable that we want to predict
I Predictor variable(s) : variable(s) used for the

predictions
I Used for data exploration in many fields

Or in every-day life ...

Sunny

Athletic ?

Yes

Run Walk

Rainy

No Yes

Cinema Board games

No

Good movies
curently ?

Weather ?

Fontrodona Nicolas | Random Forest

4

Decision trees
Terminology

Root node

Decision Node

Terminal Node
Leaf

Terminal Node
Leaf

Decision Node

Terminal Node
Leaf

Terminal Node
Leaf

Terminal Node
Leaf

Decision Node

Branch / Sub-Tree

A

B C

I B and C are the children of A
I A is the parent of B and C

Fontrodona Nicolas | Random Forest

5

Decision Trees

Type of decision tree
I Classification Trees

I Target variable : categorical variable
I Regression Trees

I Target variable : continuous variable

Predictors, can be categorical or continuous variables

The trees can be built using different algorithms:
I Classification and Regression Tree algorithm (CART)

I Introduced by Breiman in 1984

Fontrodona Nicolas | Random Forest

6

Classification Trees
Example

Let’s consider a tree built (with the CART algorithm) from class
composed of 20 students.

I Target variable : gender
I Predictors : size, weight of the students

Fontrodona Nicolas | Random Forest

7

Classification Trees
Example

Tree built from our training set of students.

True False

True False

Weight ≤ 60 kg

Height ≤ 185,4cm Height ≤ 180 cm

Height ≤ 164,8cm

Height ≤ 164,6cm

3 W 1 M

6 W

1 M 7 M Height ≤ 186,4cm

1 W 1 M

True

True

True

True FalseFalse

False

False

Prediction for a student with a weight of 59 kg and a size of 182 cm ?
Fontrodona Nicolas | Random Forest

8

Classification Trees
Example

Tree build from our training set of students

True False

True False

Weight ≤ 60 kg

Height ≤ 185,4cm Height ≤ 180 cm

Height ≤ 164,8cm

Height ≤ 164,6cm

3 W 1 M

6 W

1 M 7 M Height ≤ 186,4cm

1 W 1 M

True

True

True

True FalseFalse

False

False

Prediction for a student with a weight of 59 kg and a size of 182 cm ? Woman

Prediction (classification tree) : modality of the majority of observations in the
leaf where a test record fall.

Fontrodona Nicolas | Random Forest

9

Classification Trees
Building the tree

How the classification tree is built ?
Main idea : Split node to increase homogeneity of the target variable.
Several algorithms are used to do this:

I Gini index : (default in CART algorithm) compute the impurity of
a node

I And others (Entropy) ...

Gini formula (for a node): G = 1−
m∑

i=1
p2

i

Where :
I m is the number of modality of the target variable
I pi frequency of the modality i in a node

Fontrodona Nicolas | Random Forest

9

Classification Trees
Building the tree

How the classification tree is built ?
Main idea : Split node to increase homogeneity of the target variable.
Several algorithms are used to do this:

I Gini index : (default in CART algorithm) compute the impurity of
a node

I And others (Entropy) ...

Gini formula (for a node): G = 1−
m∑

i=1
p2

i

Where :
I m is the number of modality of the target variable
I pi frequency of the modality i in a node

Fontrodona Nicolas | Random Forest

10

Classification Trees
Building the tree

True False

Weight ≤ 60 kg

Height ≤ 185,4cm Height ≤ 180 cm

Woman

Man

≤ 60 kg > 60 kg

A

B C

A

B C

Gini impurity of the 3 nodes

I G = 1−
m∑

i=1
p2

i

I GA = 1−
(

10
20

2
+ 10

20
2
)
= 0.5

I GB = 1−
(

9
11

2
+ 2

11
2
)
= 0.298

I GC = 1−
(

1
9

2
+ 8

9
2
)
= 0.198

Fontrodona Nicolas | Random Forest

10

Classification Trees
Building the tree

True False

Weight ≤ 60 kg

Height ≤ 185,4cm Height ≤ 180 cm

Woman

Man

≤ 60 kg > 60 kg

A

B C

A

B C

Gini impurity of the 3 nodes

I G = 1−
m∑

i=1
p2

i

I GA = 1−
(

10
20

2
+ 10

20
2
)
= 0.5

I GB = 1−
(

9
11

2
+ 2

11
2
)
= 0.298

I GC = 1−
(

1
9

2
+ 8

9
2
)
= 0.198

Fontrodona Nicolas | Random Forest

10

Classification Trees
Building the tree

True False

Weight ≤ 60 kg

Height ≤ 185,4cm Height ≤ 180 cm

Woman

Man

≤ 60 kg > 60 kg

A

B C

A

B C

Gini impurity of the 3 nodes

I G = 1−
m∑

i=1
p2

i

I GA = 1−
(

10
20

2
+ 10

20
2
)
= 0.5

I GB = 1−
(

9
11

2
+ 2

11
2
)
= 0.298

I GC = 1−
(

1
9

2
+ 8

9
2
)
= 0.198

Fontrodona Nicolas | Random Forest

10

Classification Trees
Building the tree

True False

Weight ≤ 60 kg

Height ≤ 185,4cm Height ≤ 180 cm

Woman

Man

≤ 60 kg > 60 kg

A

B C

A

B C

Gini impurity of the 3 nodes

I G = 1−
m∑

i=1
p2

i

I GA = 1−
(

10
20

2
+ 10

20
2
)
= 0.5

I GB = 1−
(

9
11

2
+ 2

11
2
)
= 0.298

I GC = 1−
(

1
9

2
+ 8

9
2
)
= 0.198

Fontrodona Nicolas | Random Forest

11

Classification Trees
Building the tree

True False

Weight ≤ 60 kg

Height ≤ 185,4cm Height ≤ 180 cm

Woman

Man

≤ 60 kg > 60 kg

A

B C

A

B C

To compute the information gain we use the following formula :

IGsplit_A = GA − |YB |
|YA| ×GB − |YC |

|YA| ×GC

Where
I Y is the target variable
I |Yx | is the length of Y in the node x
I Gx is the gini impurity of the node x

Fontrodona Nicolas | Random Forest

12

Classification Trees
Building the tree

True False

Weight ≤ 60 kg

Height ≤ 185,4cm Height ≤ 180 cm

Woman

Man

≤ 60 kg > 60 kg

A

B C

A

B C

Information gain of the first split

I GA = 1−
(

10
20

2
+ 10

20
2
)
= 0.5

I GB = 1−
(

9
11

2
+ 2

11
2
)
= 0.298

I GC = 1−
(

1
9

2
+ 8

9
2
)
= 0.198

I IGsplit_A = GA − |YB |
|YA| ×GB − |YC |

|YA| ×GC

I IGsplit_A = 0.5− 11
20 × 0.298− 9

20 × 0.198 = 0.247

Fontrodona Nicolas | Random Forest

13

Classification Trees
Building the tree

True False

Weight ≤ 60 kg

Height ≤ 185,4cm Height ≤ 180 cm

Woman

Man

≤ 60 kg > 60 kg

A

B C

A

B C

Information gain of the first split
I IGsplit_A = 0.5− 11

20 × 0.298− 9
20 × 0.198 = 0.247

I CART algorithm do this calculation for every values of every
predictors in order to find the split with the biggest IG value.

I In our case : Weight ≤ 60kg

Fontrodona Nicolas | Random Forest

14

Regression trees

I Globally same principle as classification tree
I slightly variation in tree building

I Other impurity index used : MSE (Mean Square index - default in
CART algorithm) ...

I The tree may grow until there is only leaves containing one sample
(over-fit)

I slightly variation in tree prediction
I A sample falling in a leaf will take the mean value of the target

variable of the training data in that leaf

Fontrodona Nicolas | Random Forest

15

Decision Trees

Classification and Regression Trees - Formalization
I Division of the predictor space into distinct and non-overlapping

regions when building the tree
I Build by a top-down greedy approach / recursive binary splitting

approach.
I Note : Not all the algorithms use the binary splitting ...
I But CART does.

I The splitting process goes on until a user defined stopping
criteria is reached.

I example : stop splitting when the leaves have less than 50
observations.

Fontrodona Nicolas | Random Forest

16

Decision trees

Advantages
I Easy to understand
I Useful in data exploration
I Little data cleaning required
I No constraint on predictor(s) / target variable type
I Non parametric method

Fontrodona Nicolas | Random Forest

17

Decision trees

Disadvantages
I No very well fitted for a continuous target variable
I Tree structure, locally greedy
I Computation of the impurity of the tree⇒ overfitting

Solution (overfitting): Create a multitude of decision trees⇒ Random
Forest

Fontrodona Nicolas | Random Forest

17

Decision trees

Disadvantages
I No very well fitted for a continuous target variable
I Tree structure, locally greedy
I Computation of the impurity of the tree⇒ overfitting

Solution (overfitting): Create a multitude of decision trees⇒ Random
Forest

Fontrodona Nicolas | Random Forest

18

Random forest
Algorithm

Algorithm
1. From a training set T with N observations

I Construct K samples of size N taken from T with replacement.
I Each sampled training set will contain about 2/3 of the

observations in T

2. Grow K trees
I Build each tree with a different sampled training set.
I If P are the predictors, p predictors (with p < P) are randomly

selected to split each node of each tree.
I This will induce a week correlation between the trees ⇒ reduce the

over-fitting

3. Predict new data by aggregating the predictions of the K Trees.
(i.e majority votes for classification, average for regression)

Fontrodona Nicolas | Random Forest

18

Random forest
Algorithm

Algorithm
1. From a training set T with N observations

I Construct K samples of size N taken from T with replacement.
I Each sampled training set will contain about 2/3 of the

observations in T

2. Grow K trees
I Build each tree with a different sampled training set.
I If P are the predictors, p predictors (with p < P) are randomly

selected to split each node of each tree.
I This will induce a week correlation between the trees ⇒ reduce the

over-fitting

3. Predict new data by aggregating the predictions of the K Trees.
(i.e majority votes for classification, average for regression)

Fontrodona Nicolas | Random Forest

18

Random forest
Algorithm

Algorithm
1. From a training set T with N observations

I Construct K samples of size N taken from T with replacement.
I Each sampled training set will contain about 2/3 of the

observations in T

2. Grow K trees
I Build each tree with a different sampled training set.
I If P are the predictors, p predictors (with p < P) are randomly

selected to split each node of each tree.
I This will induce a week correlation between the trees ⇒ reduce the

over-fitting

3. Predict new data by aggregating the predictions of the K Trees.
(i.e majority votes for classification, average for regression)

Fontrodona Nicolas | Random Forest

19

Random Forest

Advantages
I Inherits the advantages of decision trees
I No overfit
I Handle large data sets with large dimensions.

Disadvantages
I Not very well fitted for a continuous target variable.
I Time consuming for a forest with a lot of trees
I Very little control on what the model does

Fontrodona Nicolas | Random Forest

19

Random Forest

Advantages
I Inherits the advantages of decision trees
I No overfit
I Handle large data sets with large dimensions.

Disadvantages
I Not very well fitted for a continuous target variable.
I Time consuming for a forest with a lot of trees
I Very little control on what the model does

Fontrodona Nicolas | Random Forest

20

Random forest
Application

Application - Fisher’s Iris data set

Ronald Fisher

Fisher’s Iris data set is a multivariate data set
introduced by the British statistician and biologist
Ronald Fisher in 1936

I The data set contains 50 records for each iris
species (setosa, versicolor, virginica).

I For each flower the width and the length of the
petal and the sepal were measured

Objectives
I Predict the species of the iris thanks to the width

and the length of their petals and sepals
I We will use a random forest classifier

Fontrodona Nicolas | Random Forest

20

Random forest
Application

Application - Fisher’s Iris data set

Ronald Fisher

Fisher’s Iris data set is a multivariate data set
introduced by the British statistician and biologist
Ronald Fisher in 1936

I The data set contains 50 records for each iris
species (setosa, versicolor, virginica).

I For each flower the width and the length of the
petal and the sepal were measured

Objectives
I Predict the species of the iris thanks to the width

and the length of their petals and sepals
I We will use a random forest classifier

Fontrodona Nicolas | Random Forest

21

Random forest
Application

Application - Fisher’s Iris data set

RandomForest package

Fontrodona Nicolas | Random Forest

22

Random forest
Application

Application - Fisher’s Iris data set

RandomForest package

Fontrodona Nicolas | Random Forest

23

Random forest
Application

Objectives
I Target variable : Species
I Predictors : Width and length of petals and sepals

1 # import modules
2 from sklearn.ensemble import RandomForestClassifier
3 import sklearn.datasets # allow to load iris data set
4 import pandas as pd # dataframe management in python
5 import numpy as np # array management
6 # display of graphics
7 import seaborn as sns
8 from matplotlib import pyplot as plt

Fontrodona Nicolas | Random Forest

24

Random forest
Application

Loading the data set

1 # loading iris dataset
2 iris = sklearn.datasets.load_iris()
3 plant_df = {0: "setosa", 1: "versicolor", 2: "virginica"}
4 df = pd.DataFrame(data= np.c_[iris['data'], iris['target']],
5 columns= iris['feature_names'] + ['species'])
6 df["species"] = df["species"].map(plant_df)
7 df.head()

Fontrodona Nicolas | Random Forest

25

Random forest
Application

Exploration of the data set

1 # see the number of NaN values for the different columns ...
2 missing = df.isnull().sum()
3 unmissing = df.count()
4 percent_1 = missing / df.count() * 100
5 percent_2 = (round(percent_1, 1))
6 missing_data = pd.concat([missing, percent_2, unmissing], axis=1,
7 keys=['missing', '%_missing', 'present'])
8 missing_data = missing_data.sort_values(by="missing", ascending=False)
9 missing_data.head(5)

Fontrodona Nicolas | Random Forest

26

Random forest
Application

Exploration of the data set

1 # Adding noise
2 for i in range(len(df.columns[:-1])):
3 my_mean = np.mean(df[df.columns[i]])
4 df[df.columns[i]] = [val + ((np.random.random() * my_mean) - my_mean / 2)
5 for val in df[df.columns[i]]]
6 # Displaying a barplot of each predictor in function of the plant specie
7 ncol = len(df.columns[:-1])
8 fig, axes = plt.subplots(nrows=1, ncols=ncol, figsize=(20, 5))
9 for i in range(len(df.columns[:-1])):

10 ax = sns.barplot(x=df["species"], y=df[df.columns[i]], ci=100, ax = axes[i])
11 ax.set(ylabel = df.columns[i], title= df.columns[i])

Fontrodona Nicolas | Random Forest

27

Random forest
Application

Creation of a test / train set

1 # creation of a column is_train to select the data in the train or in the test dataset
2 df["is_train"] = np.random.uniform(0, 1, len(df)) <= .8
3 # creation of train and test dataframe
4 train, test = df[df['is_train']==True], df[df['is_train']==False]
5
6 # removing the column 'is_train'
7 train = train.drop('is_train', axis=1)
8 test = test.drop('is_train', axis=1)
9

10 # print the content of the selected dataset
11 print("train dataset %s flowers" % len(train))
12 print(train["species"].value_counts())
13 print("test dataset %s flowers" % len(test))
14 print(test["species"].value_counts())

Fontrodona Nicolas | Random Forest

28

Random forest
Application

Transform every non-numerical variable into numerical one

1 train.head()

1 # Turn every non numeric variable into numeric one.
2 to_num = {"setosa": 0, "versicolor": 1, "virginica" : 2}
3 train["species"] = train["species"].map(to_num)
4 train.head()

Fontrodona Nicolas | Random Forest

29

Random forest
Application

Building and training the classifier

1 p = train.drop("species", axis=1) # predictors
2 y = train["species"] # target
3 # Building the classifier
4 clf = RandomForestClassifier(n_jobs=3, random_state=1, n_estimators=100,
5 criterion='gini', oob_score=True)
6 # Training the classifier
7 clf.fit(p, y)

RandomForestClassifier(bootstrap=True, class_weight=None,
criterion=’gini’, max_depth=None, max_features=’auto’,
max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=3,
oob_score=True, random_state=1, verbose=0, warm_start=False)
Above between parenthesis : hyper-parameters of the random forest

classifier
Fontrodona Nicolas | Random Forest

30

Random forest
Application

Importance of predictors

1 # Display the importance of predictors
2 importances = pd.DataFrame({'predictors':p.columns,
3 'importance':np.round(clf.feature_importances_,10)})
4 importances = importances.sort_values('importance',ascending=False)
5 .set_index('predictors')
6 plt.subplots(figsize = (7, 3))
7 sns.barplot(x=importances.index, y=importances["importance"])
8 plt.show()

Fontrodona Nicolas | Random Forest

31

Random forest
Application

Prediction of the classifier

1 # Apply the Classifier to the test data (which, remember, it has never seen before)
2 preds = list(map(lambda x: plant_df[x], clf.predict(test.drop("species", axis=1))))
3 real = test["species"]
4 # creation of the confusion matrix
5 pd.crosstab(np.array(real), np.array(preds),
6 rownames=['Actual species'], colnames=['Predicted species'])

Fontrodona Nicolas | Random Forest

32

Random forest
Application

Accuracy of the classifier

1 # Accuracy of the model with out of bag score
2 print("oob score:", round(clf.oob_score_, 4)*100, "%")
3 from sklearn.metrics import precision_score, recall_score
4 print("Precision:", round(precision_score(real, preds, average="micro"), 2) * 100, "%")
5 print("Recall:", round(recall_score(real, preds, average="micro"), 2) * 100, "%")

oob score: 77.39 %
Precision: 89.0 %
Recall: 89.0 %

Fontrodona Nicolas | Random Forest

33

Conclusion

Conclusion
Random forest :

I Machine learning algorithm. Training set needed to build a forest.
I Useful for data exploration of large data sets
I Easy to use
I Don’t overfit the model thanks to random sampling of predictors

and training records to build each tree.
I Time consuming when building a forest with a lot of trees on

large data sets.

Fontrodona Nicolas | Random Forest

