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Rough typology of ML methods
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Introduction

• When data are heterogeneous, can we detect some clusters of homogeneous individuals ?
• Objective : reduce the number of individuals into cluster centers
• Clustering is a descriptive method, not explanatory
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Underlying Hypotheses

• Some individuals are closer to others, there exists some clusters

• How to define a distance / dissimilarity between individuals ?

• Is this hypothesis realistic ? How many clusters ?

• A clustering method is defined by a number of groups, a distance between individuals,
and an algorithm to define the groups
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Clustering vs. Classification

Supervised Learning

• Observe (y1, x1), . . . , (yn, xn)

• yi is a label, xi the associated
data

• Construct a predictor
f : X → Y
• Define a loss function `(y , f (x))

to score predictions

• Minimize the generalization
error (new y ?)

Non-Supervised Learning

• Observe (x1, . . . , xn)

• Describe the structure of X
without external information

• Group individuals ?

• Loss is more difficult to define

• How accurate is the result ?
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A combinatorial nightmare

• Can we find the ”best” partition ?
• If E is an ensemble with n points, partitioned into K clusters

→ The number of partitions of E into K groupes (Stirling number)

p(n, k) ∼ K n/K !

→ The total number of partitions of E (Bell number)

Bn =
n∑

k=1

p(n, k) =
1

e

∑
k≥1

kn

k!

• The exploration of all partitions is not possible

• Algorithms will be iterative and approximate
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Iterative Strategies

• Explore partitions and hopefully visit the best one !

Agglomerative Hierarchical Clustering

Partitionning K-means

Probabilistic Mixture Models

• There exist linear and non linear clustering methods

• How to cluster unusual data like texts, networks, curves ?
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High-dimensional data

X j
i = measurement for variable j on individual i

Xn×p =

 X j
i


1 . . . . . . . . . . . . p︸ ︷︷ ︸

variables

1
...

n

 invidivuals

• High dimension: p grows and � n

• Big Data: n and p grow
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Vectors of Rp

• Focus on inviduals, with xi a vector of Rp

defined by a p−uplet (x1, . . . , xp)
(coordinates)

xi ∈ Rp, xi =

p∑
j=1

x ji ej

• x ji is the j th recording (variable) for
individual i

• By default, xi is a column vector, x′i its
transpose

+
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Centering and scaling

• The empirical mean of xj :

xj =
1

n

n∑
i=1

x ji

• The vector of means is the barycenter of the data

x =
[
x1, . . . , xp

]
• To avoid scaling issues, consider the empirical variance of xj :

var(xj) =
1

n

n∑
i=1

(x ji − xj)2

• Consider the scaled dataset:

X̃c =

[
x1 − x1

var1/2(x1)
, . . . ,

xp − xp

var1/2(xp)

]
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Norm of a vector and basic properties

• The euclidean norm (length of a vector)

‖x̃c,i‖2
2 = 〈x̃c,i , x̃c,i 〉 = x̃c,i ′x̃c,i =

p∑
j=1

(
x̃ ji
)2

• The norm of xi quantifies the variability of individual i

var(x̃c,i ) =
1

n
‖x̃c,i‖2

2
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Principal norms used in Machine Learning

• L1 norm or Manhattan norm:

‖xi‖1 =

p∑
j=1

|x ji |

• L2 norm or Euclidian norm:

‖xi‖2
2 =

p∑
j=1

(x ji )2

• L∞ norm or sup-norm:

‖xi‖∞ = max
j=1,...,p

(
|x ji |
) There are different ways to measure the

norm of a vector
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From norms to distances between individuals

• L1 distance or Manhattan distance:

d1(xi , xi ′) = ‖xi − xi ′‖1 =

p∑
j=1

|x ji − x ji ′ |

• L2 distance or Euclidean distance:

d2(xi , xi ′) = ‖xi − xi ′‖2
2 =

p∑
j=1

(x ji − x ji ′)
2

• L∞ distance or sup-distance:

d∞(xi , xi ′) = ‖xi − xi ′‖∞ = max
j=1,...,p

(
|x ji − x ji ′ |

)
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What drives the choice of a distance ?

• L1 distance or Manhattan distance:

- Adapted to discrete inputs
- Robust to outliers
- Non differentiable

• L2 distance or Euclidean distance:

- Most common, differentiable
- Sensitive to dimension and outliers
- Sensitive to the scale of the different

inputs

• L∞ distance or sup-distance:

- Applied in logistical problems
- More specific, less used

https://towardsdatascience.com/
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Dissimilarities and Distances

• A dissimilarity d is defined by

d : E × E → R+

(i , i ′) → d(i , i ′)

• Properties:
• Non negativity for distinct elements d(i , i ′) > 0 if i 6= i ′

• Symmetry: ∀(i , i ′), d(i , i ′) = d(i ′, i)
• d(i , i ′) = 0 i.i.f i = i ′

• Distance : additional triangular inequality

d(i , i ′) ≤ d(i , i ′)+ ≤ d(i ′, i ′′)
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Gram Matrix and distance between individuals

• Pairwise distance matrix between
individuals

D =


d(x1, x1) . . . d(xi ′ , xi )

. . .

d(xi , xi ′) . . . d(xn, xn)


• Symmetric, invertible (semi definite

positive)
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Total Inertia of a dataset

The global variance of a dataset for centered
variables

IT (X) =
1

n

n∑
i=1

p∑
j=1

(x ji − xj)2

=
1

n

n∑
i=1

d2
2 (xi , x)

For centered and scaled data

IT (X̃c) =
1

n

n∑
i=1

d2
2 (x̃c,i , 0)
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Partitioning the data into clusters

• Suppose there exists K clusters

• Introduce indicator variables zik :

zik =

{
1, if i ∈ cluster k

0, otherwise

• Each cluster has size

nk =
n∑

i=1

zik

• Each cluster has center

xk =
[
x1
k , . . . , x

p
k

]
, xjk =

1

nk

n∑
i=1

zikx
j
i
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Partitioning the variance

• Between-class variance : distance of
clusters barycenters to the global
barycenter

IB =
K∑

k=1

nkd
2(xk , x)

• Within-class variance: distance of points
to their cluster center

IW =
K∑

k=1

n∑
i=1

d2(xi , xk)
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Decomposition of the total inertia

• The main theorem is that

IT = IW + IB

• IT is constant for a given dataset

• IW we want it to be minimal
(homogeneous clusters)

• IB we want it to be maximal (well
separated clusters)

Partition 1 Partition 2
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How to compare partitions

• Given two classifications P and P ′
, how to compare the different results:

• Contingency tables:

P\P ′
cluster 1 . . . cluster K

′

cluster 1 n11 . . . n1K ′

...

cluster K nK1 . . . nKK ′

• nkk ′ the number of individuals in cluster k of P and cluster k
′

of P ′

• Partitions are similar when the contingency table is diagonal

22 / 62



(Adjusted) Rand Index

• a the number of pairs in the same subset in P and P ′
(concordance)

• b the number of pairs in different subsets in P and P ′
(discordance)

• The Rand Index (∈ [0, 1]) is

RI (P,P ′
) =

a + b(n
2

)
• The Rand Index is the percentage of correct decisions:

RI (P,P ′
) =

TP + TN(n
2

)
• The Adjusted Rand Index (preferred) is the RI adjusted for the chance grouping of

elements (expected similarity of all pairwise comparison)
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Intuitions et principles

• From a dissimilarity matrix, create groups step by step:

- divide two groups (descending hierarchical clustering )
- collapse two groups (ascending hierarchical clustering )

• Create hierarchies between groups (even if the nesting is not interpreted)

• Each level of the hierarchy represents a partition with disjoint groups

• The hierarchy can be represented by a tree called dendrogram
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3 Ingredients for hierarchical clustering

• dissimilarity between individuals

• Merge the closest individuals and
create groups

• dissimilarity between groups

• Merge most similar groups

• a fusion (or division) rule
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Euclidian Distance and the Ward Method

• What is the best way to collapse groups ?

• Motivation: when groups are collapsed, the within inertia increases

IW (A,B) = IW (A) + IW (B) =
∑
i∈A

d2(xi , xA) +
∑
i∈B

d2(xi , xB)

IW (A ∪ B) =
∑

i∈A∪B
d2(xi , xAB)

• When two groups are collapsed we want to minimize this increase:

IW (A,B)− IW (A ∪ B)
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Ward Distance between groups

• The Ward distance between groups is defined by

dWard(A,B) =
nAnB

nA + nB
d2(xA, xB)

• Using this distance minimizes the increase in the within group inertia at each step of the
hierarchy

• This distance accounts for desequilibria of clusters size

• This is the default between-group distance implemented in software
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Other between-groups distance

• Minimum Link (simple link)

d(A,B) = min
i∈A,i ′∈B

d(xi , xi ′)

• Maximal link :

d(A,B) = max
i∈A,i ′∈B

d(xi , xi ′)

• Average Link

d(A,B) =
1

nA × nB

∑
i∈A,i ′∈B

d(xi , xi ′)
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Other between-groups distance

• Minimum Link (simple link)

d(A,B) = min
i∈A,i ′∈B

d(xi , xi ′)

• Maximal link :

d(A,B) = max
i∈A,i ′∈B

d(xi , xi ′)

• Average Link

d(A,B) =
1

nA × nB

∑
i∈A,i ′∈B

d(xi , xi ′)
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Example of tree construction
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Properties of different links

• If the cluster structure is strong, results will be comparable

• Minimum Link: only considers one observation per group: can create paquets (high
within group variance)

• Maximum Link: two groups are close if all observations are close once collapsed: can
create small homogeneous groups (high between-group variability)

• Average Link: trade-off between Minimum and Maximum Links
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A simple idea

• One of the most used algorithm : quick and easy

• Implemented for the euclidean distance in most software

• Based on the decomposition of inertia
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Le groupe le plus proche

• Consider the indicator variable zik that equals 1 if individual i is in cluster k

nk =
n∑

i=1

zik

• Inertia boils down to

IW =
n∑

i=1

K∑
k=1

zikd
2(xi , xk)

IB = n ×
∑
k=1

d2(xk , x)

• To determine the nearest cluster for each individual

ẑi = arg min
k

{
d2(xi , xk)

}
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Two-Step algorithm

• Step [h]: update centers x1, . . . , xK when labels z[h] are known

x
[h+1]
k =

1

n
[h]
k

n∑
i=1

ẑ
[h]
ik xi

• Step [h + 1]: update labels z when centers x
[h+1]
1 , . . . , x

[h+1]
K are updated

ẑ
[h+1]
i = arg min

1,...,K

{
d2(xi , x

[h+1]
k )

}
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Illustration of kmeans
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Decreasing inertia

• Denoting by [h] the step h of the algorithm, z[h], x[h]

• The inertia depends on both quantities IW (z[h], x[h])

• Updating centers

IW (z[h], x[h+1]) =
n∑

i=1

K∑
k=1

z
[h]
ik d2(xi , x

[h+1]
k )

• Updating labels

IW (z[h+1], x[h+1]) =
n∑

i=1

K∑
k=1

z
[h+1]
ik d2(xi , x

[h+1]
k )

• The criterion decreases at each step

IW (z[h], x[h]) ≥ IW (z[h], x[h+1]) ≥ IW (z[h+1], x[h+1])
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Convergence & initialization

• The inertia is a bounded suite, so the
algorithm converges within a finite
number of steps

• The solution is only a local minimizer :
depends on the initialization step

• Clustering algorithm are very sensitive to
initialization (try different points)
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Linear vs non linear methods

• Linear methods provides clusters that can
be separated by planes

• Recent developments propose to
generalize clustering beyond linear
methods

• Popular methods consist in constructing a
proximity graph between points to
represent interactions

Linear Separation Non Linear separation
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Graph-based clustering in single cell genomics

• Single Cell transcriptomic data: given cell
expression, assign cells to cell-types

• Group cells according to their
transcriptomic proximities

• The graph represents distances between
cells
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Definition of a graph

A graph G =
(
V, E

)
is defined by a set of vertices V = {1, . . . , n} and a set of edges

E = {(i , j) ∈ V2, i ∼ j}, directed or non directed
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Basic Features of graphs

• Define the adjacency matrix of a graph

A =

{
wij ∈ R, if i ∼ j

0 otherwise

• A graph can be binary: wij ∈ {0, 1}
• Or weighted : wij ∈ R

1 2

4
5

3
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From a dissimilarity matrix to a graph

• How to construct the graph from the
data X?

• From any dissimilarity matrix (Gram
Matrix)

• Most popular method : neighborhood
graph (kNN graph)

• Clustering can be restated as finding
clusters of vertices
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knn-Graphs

• Consider a dissimilarity matrix

• Choose a number of neighbors (resolution
parameter)

• For a given vertex, consider the k nearest
neighbors

• Construct the proximity graph iteratively

• Can also consider shared neighborhoods

• Sparsification of the original dense graph

• Need efficient methods on large datasets

After 
Convergence

Estimated 
knn Graph
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Clustering strategy based on modules/community

• In a network, a module is a densely
connected subgraph

• It is a quantitative definition (maximum:
clique)

• Modularity: what is the connectivity of
nodes vs random connectivity

• Find clusters such that the modularity is
maximal

47 / 62



The Graph-Cut problem

• How to partition a graph into subgraphs
with a given objective ?

• The size of a cut is the number of cut
edges

• Clustering by graph-cuts: smallest cut
that make homogeneous subgraphs

Best Cut
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Finding the best cut

• Vol(S) volume of subgraph S (nb of
nodes)

• Cut(S ,S ′) number of edges that link two
subgraphs S and S ′

• The normalized cut value:

NormCut(S ,S ′) =
Cut(S ,S ′)

Vol(S)
+

Cut(S , S ′)

Vol(S ′)

• Avoids cuts that generate too-small
subgraphs

• The combinatorial complexity is too high,
need heuristics

Best Cut
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Modularity optimization using the Louvain Algorithm

• Approximation of a graph-cut problem

• A cluster is equivalent to a module

• If K clusters (module) with indicator
variables zik , the modularity is

MK (z) =
1

2m

K∑
k=1

K∑
`=1

zikzj`

(
Aij −

didj
2m

)
• di =

∑
j Aij , m =

∑
ij Aij

• Find z such that MK (z) is maximal

Strong intra-class
connection

Strong intra-class
connection

Low between-class
connection
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Extensions and generalizations

• The Louvain algorithm is one example of
graph-based clustering methods

• Widely used in single cell data analysis

• Many hyper parameters to tune

• Non Linear clustering is a very active field
of research
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Clustering analysis in a nutshell

• choose a distance

• choose an algorithm

• choose the number of clusters K

• repeat the analysis for 1 to Kmax clusters

• choose the number of clusters

• check the stability of clusters

• interpret the clusters

• Clustering is non supervised, part of the analysis is subjective, so we need guidelines
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Elbow plot and model selection

• Choosing the number of clusters is a
model selection task

• To choose a model we need a measure of
quality of fit

ÎW (K ) =
n∑

i=1

K∑
k=1

ẑikd
2(xi , xk)

• When K increases, ÎW (K ) decreases
because clusters are more and more
homogeneous

• The elbow plot consists in finding the
best trade-off between quality of fit and a
reasonable number of clusters

54 / 62



Intuitions for model selection

• Model selection is based on the bias-variance trade-off

• Bias : if a model has more parameters, it will approximate the data very precisely

• Variance : if a model has more parameters, the estimation error will increase

• How to find the best trade-off between both trends ?

• Model-selection criteria are based on penalized criteria:

CK +λ pen(K )

• CK is a contrast that decreases with the dimension

• pen(K ) is a penalty that increases with the dimension of the model

• λ is a penalty constant that tunes the trade-off
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Examples of model selection criteria (not exhaustive)

• The Akaike Information Criterion

AICK = −2 log ÎW (K ) + 2K

• The Bayesian Information Criterion

BICK = −2 log ÎW (K ) + K log(n)

• The Integrated Classification Likelihood

ICLK = −2 log ÎW (K )+K log(n)+
K∑

k=1

nk log nk
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Assessing cluster separation with the Silhouette score

• Consider clustering results into K clusters with inferred labels (ẑ1, . . . , ẑK )

• For point i that has been assigned to cluster k , compute the distance with points of the
same cluster

ai =
1

nk − 1

∑
j 6=i

ẑik ẑjkd
2(xi , xj)

• Compute the distance with points of other clusters

bi = min
`

 1

n`

∑
j

ẑik ẑj`d
2(xi , xj)


• Compute the silhouette score for each point

si =
bi − ai

max {ai , bi}
∈ [−1, 1]
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Assessing cluster stability

• Consider two clustering results P̂K
n , P̂ ′K ′

n

• (In)Stability of clustering results is defined as the expectation of distances between
partitions (like adjusted Rand Index)

E
{
d
(
P̂K
n , P̂ ′K ′

n

)}
• Use sub-sampling to perturb the data

1

B2

∑
b,b′

d
(
P̂K

(b), P̂
′K ′

(b′)

)
• To perturb the data (for instance): resampling, adding noise, use different dimension

reduction methods
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High dimensional setting

• distance-based methods are sensitive to
increases in dimension

• The geometry of data is modified in high
dimension

• Consider a sphere S(x,R) and a cube
C (x,R) centered on x ∈ Rp with radius R

Vol [C (x,R)]

Vol [S(x,R)]
=

2pRp

2Rpπp/2/pΓ(p/2)

Vol [C (x,R)]

Vol [S(x,R)]
→

p→∞
0

From C.Azencott
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Many points are needed to fill the space

• Number of points (x1, . . . , xn) needed to
fill the cube [0, 1]p by
S(x1, 1), . . . ,S(xn, 1)

p 20 30 50 100

n 39 45,630 5.7 1012 42 1039

• High dimensional spaces are empty !

• Points are far apart

From C.Giraud
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Clustering in high dimension

• Dimension reduction is mandatory for
clustering in high dimension

• Combine DR + clustering

• Use feature selection

• Try different DR methods

• Try different clustering methods

• Interpret clusters in the input space !
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