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1. Introduction
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Rough typology of ML methods

Machine
Learning
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Classification cctorg Analysis || NaveBaves | hbor
Supervised
Learning
Linear o
2 - SVR, Ensemble Decision Neural
Develop predictive Regression Reg‘;ﬁ:“" GPR Methods Trees Networks
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reduction PCA-MCA MDS CCA-Parafac Kernel PCA
methods
N kMeans, kmedoids " " Gaussian
UnEuper_wsed Clustering Fuzzy C-Means Hierarchical M
earning
Neural Hidden Markov
Discover an internal Networks Model

representation from
input data only




Introduction

® When data are heterogeneous, can we detect some clusters of homogeneous individuals 7
® Objective : reduce the number of individuals into cluster centers
e (lustering is a descriptive method, not explanatory

it X - -
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Xn Xn Clustering into K groups
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PCA with K axis



Underlying Hypotheses

Some individuals are closer to others, there exists some clusters

How to define a distance / dissimilarity between individuals ?

Is this hypothesis realistic 7 How many clusters ?

A clustering method is defined by a number of groups, a distance between individuals,
and an algorithm to define the groups



Clustering vs. Classification

Supervised Learning

® Observe (y1,x1),- -, (¥n, Xn)

® y; is a label, x; the associated
data

® Construct a predictor
f:X—=Y

® Define a loss function ¢(y, f(x))
to score predictions

® Minimize the generalization
error (new y ?)

Non-Supervised Learning
® Observe (x1,...,%n)

® Describe the structure of X
without external information

® Group individuals ?
® | oss is more difficult to define

® How accurate is the result ?
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A combinatorial nightmare

® Can we find the "best” partition ?
e |f E is an ensemble with n points, partitioned into K clusters
— The number of partitions of E into K groupes (Stirling number)

p(n, k) ~ K"/K!

— The total number of partitions of E (Bell number)

n

anzp(nﬂk)zézr?

k=1 k>1

® The exploration of all partitions is not possible

® Algorithms will be iterative and approximate



Iterative Strategies

® Explore partitions and hopefully visit the best one !
Agglomerative Hierarchical Clustering
Partitionning K-means

Probabilistic Mixture Models
® There exist linear and non linear clustering methods

® How to cluster unusual data like texts, networks, curves ?
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High-dimensional data

X! = measurement for variable j on individual /

Xn><p =

X/

variables

¢ High dimension: p grows and > n

e Big Data: n and p grow

invidivuals
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Vectors of R”

® Focus on inviduals, with x; a vector of RP
defined by a p—uplet (xq,...,xp)
(coordinates)

p
X;ERP, X,':ZXIJ-EJ'
j=1

[ - .th . .
® x! is the j* recording (variable) for
individual i
® By default, x; is a column vector, xf- its
transpose
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Centering and scaling

® The empirical mean of x/:
A LA
3= =
TR
i=1
® The vector of means is the barycenter of the data
x=[x',...,%"]

® To avoid scaling issues, consider the empirical variance of x/:

. 1 < .
Jy = = ) — x)?
var(x’/) p Iz;( L —x)
® Consider the scaled dataset:
~ xI —x! xP — xP
< [var1/2(x1)’ Y var1/2(xp)}
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Norm of a vector and basic properties

® The euclidean norm (length of a vector)

1%
~ ~ ~ ~ ~ ~f\ 2
Xe,il3 = KeinXei) = Xe,ifkei = Y (%)

j=1
® The norm of x; quantifies the variability of individual /

1

var(%e) = - %e.l3
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Principal norms used in Machine Learning

e /1 norm or Manhattan norm:

p

Ixilln = > ||

j=1

® /2 norm or Euclidian norm:

p

Ixi[3 =" (x)?

j=1
® [°° norm or sup-norm:

Ixilloo = max (|x/])

.I_]-: P

I3 = % + 23

1xl[1 = [21] + |22

X1

There are different ways to measure the
norm of a vector
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From norms to distances between individuals

e /! distance or Manhattan distance:
p . .
di(xi, xir) = [[xi = xill1 = Y ¥/ — x|
j=1

e /2 distance or Euclidean distance:

p
da(xi,xi) = [Ix; — xi[3 =Y (o = x})?

j=1

e [*° distance or sup-distance:

=1,...,

14 /62



What drives the choice of a distance ?

Euclidean Cosine Hamming
o o
e |1 distance or Manhattan distance: o Alfolififo]o]
- Adapted to discrete inputs \ o g HA EOM
- Robust to outliers *
- Non differentiable Manhattan Minkowski Chebyshev
e /2 distance or Euclidean distance: P

- Most common, differentiable

- Sensitive to dimension and outliers

- Sensitive to the scale of the different
inputs

® | > distance or sup-distance: “
- Applied in logistical problems —

- More specific, less used

https://towardsdatascience.com/ e


https://towardsdatascience.com/

Dissimilarities and Distances

o A dissimilarity d is defined by
d:ExE — RV
(i,i"y — d(i,)

® Properties:
® Non negativity for distinct elements d(i,i") > 0 if i # /'
® Symmetry: V(i,i"), d(i,i") = d(i',i)
o d(i,i"y=0iifi=1/

® Distance : additional triangular inequality

d(i, ') < d(i,i")+ < d(i’, i")
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Gram Matrix and distance between individuals

® Pairwise distance matrix between
individuals

d(x]_,Xl) e d(x,-/, X,')

d(xj,xi7) ... d(xn,Xn)

® Symmetric, invertible (semi definite
positive)
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Total Inertia of a dataset

The global variance of a dataset for centered ?
variables
1,
Ir(X) = = x] —%)?
) = 526

1 n
= - d2 i77
p ,-E_l 5 (xi,X)

For centered and scaled data

~ 1 & ~
IT(Xe) = ;Zdzz(xc,;,o)
i=1
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Partitioning the data into clusters

® Suppose there exists K clusters °
® |ntroduce indicator variables zj:
°
o o o
1, if i € cluster k P P
Zjje = . O
0, otherwise ° o = °
3
) ° ® o0
® Each cluster has size °
o o
n [ ] [ ] [m|
ng = Z Zik X
— X
i=1 o O 1 °
°
® Each cluster has center ° O e
® °
) <

. 1 <& .
— —1 — —
XkZ[Xka---,Xi], xiz;kg ZikX,J'
i=1
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Partitioning the variance

® Between-class variance : distance of
clusters barycenters to the global
barycenter

K
Ig = Z nkd2(ik,i)
k=1

® Within-class variance: distance of points
to their cluster center

K n
lyw = Z Z dz(x,-,ik)

k=1 i=1




Decomposition of the total inertia

® The main theorem is that ¢ ¢
L] ([ ]
o o o o
J— [ ] [ ]
Ir=1lw+lg ° ¢ ° ‘ ° °
[ ] ° ([ ]
. . o o o o
® |+ is constant for a given dataset ° o ° .
[ ] [ ] [ [ ]
® |, we want it to be minimal LI * e e ¢
(homogeneous clusters) . R . .
® |z we want it to be maximal (well . .' . o o : . .
[} ()
separated clusters) Partition 1 Partition 2
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How to compare partitions

e Given two classifications P and P’, how to compare the different results:

e Contingency tables:
P\P" | cluster 1 ... cluster K’
cluster 1 ni ny
cluster K nK1 Ny’
® n,, the number of individuals in cluster k of P and cluster kK of P’
[ ]

Partitions are similar when the contingency table is diagonal
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(Adjusted) Rand Index

® a the number of pairs in the same subset in P and P’ (concordance)

b the number of pairs in different subsets in P and P’ (discordance)
The Rand Index (€ [0,1]) is

ath
2)

The Rand Index is the percentage of correct decisions:

RI(P,P) =

TP+ TN

(2)
The Adjusted Rand Index (preferred) is the Rl adjusted for the chance grouping of
elements (expected similarity of all pairwise comparison)

RI(P,P') =
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Outline

2. Hierarchical Clustering
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Intuitions et principles

From a dissimilarity matrix, create groups step by step:
- divide two groups (descending hierarchical clustering )
- collapse two groups (ascending hierarchical clustering )

Create hierarchies between groups (even if the nesting is not interpreted)

Each level of the hierarchy represents a partition with disjoint groups

The hierarchy can be represented by a tree called dendrogram



3 Ingredients for hierarchical clustering

distance between
root groups

e dissimilarity between individuals

anisIng
Agglomerative

Merge the closest individuals and
Create groups

o dissimilarity between groups

® Merge most similar groups

leaf

e a fusion (or division) rule

oo
oo o

.

N
1 |

level of the hierarchy

Height of the tree



Euclidian Distance and the Ward Method

® What is the best way to collapse groups ?

® Motivation: when groups are collapsed, the within inertia increases

Iw(A B) = lw(A)+1lw(B)=>_ d*(xi,%a) + > _ d*(xi,Xs)
i€A ieB

IW(AUB) = Y d*(x;,%a5)
i€EAUB

® When two groups are collapsed we want to minimize this increase:

lw(A, B) — Iy (AU B)



Ward Distance between groups

The Ward distance between groups is defined by

nang

dward(A, B) = Py

d2(iA,§B)

Using this distance minimizes the increase in the within group inertia at each step of the
hierarchy

This distance accounts for desequilibria of clusters size

This is the default between-group distance implemented in software
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Other between-groups distance

® Minimum Link (simple link)

d(A,B) = ,ET;nEBd(x,,x, )

o o
. . .
® Maximal link : Oe
3 °
o o
d(A,B) = max d(x;,xjr) °
i€A,i’eB max d(xz,xl) °
i€EA'EB [ ]
® Average Link % min  d(x;, X;)
JcA,i’'eB
d(A B Z d xluxl ) O [ ]
naxn
A B i€A,i'eB ()
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Other between-groups distance

a Complete linkage clustering b Single linkage clustering

}7

® Minimum Link (simple link)

d(A, B) = _min d(xi,xi)

TOPBEREIZER 2

® Maximal link :

0.2 0.4 06

o

d(A, B) = max d(X,‘,X,’/) oo e
. P
i€A,i'eB Figure 3 | Dendrograms of hierarchical clustering of gene expression profiles
based on correlation distance. The data were generated by creating core
° H profiles A1, B1, C1, D1, and E1 with correlation values of 0.7, 0.5, 0, -0.5,
Average LI n k and -0.7 (respectively) with the reference profile R from Figure 1. For each
core profile (e.g., A1), four additional highly correlated random profiles were
generated (e.g., A2—A5). Profiles are colored by group and clusters formed

1

d(,47 B) = — g d(xi’ xl-,) by cutting at a fixed height (dashed line). (a) Complete linkage clustering
na X ng tends to create balanced dendrograms by first clustering objects into small
i€EAI'eB nodes and then clustering the nodes. (b) Single linkage clustering tends to

create stringy dendrograms by first creating a few nodes and then adding
objects to them one at a time.

30/
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Example of tree construction

a Complete linkage clustering of 5 objects b Dendrogram
1 2 3 4 20
A B CDE A B CED AB CED AB CED 16
Al O Al O AB| O AB| O 12
B|5 0 Bl5 0 CE|20 0 CED|20 © 8
C(10 3 0 CE|20 8 O Dl15 11 0 4
D|156 7 0 D|15 6 11 0
El20 82110 0 BeED

Figure 2 | Complete linkage clustering of five objects. (a) Pairwise distances
(step 1) are used to merge objects (steps 2-4) where the maximum of all
pairwise distances is used. At each merging step, the shortest distance is
chosen (blue). (b) A dendrogram with a vertical axis showing the distance
between merged nodes. To create clusters, one can cut the tree at a fixed
height (dashed line).
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Properties of different links

If the cluster structure is strong, results will be comparable

Minimum Link: only considers one observation per group: can create paquets (high
within group variance)

Maximum Link: two groups are close if all observations are close once collapsed: can
create small homogeneous groups (high between-group variability)

Average Link: trade-off between Minimum and Maximum Links
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3. k-means clustering
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A simple idea

® One of the most used algorithm : quick and easy
® |mplemented for the euclidean distance in most software

® Based on the decomposition of inertia
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Le groupe le plus proche

o Consider the indicator variable z; that equals 1 if individual i is in cluster k

n
ng = E Zik
i=1

® [nertia boils down to
n K
w = zid? (%7, %)
i=1 k=1
Ilg = nx d2(ik,i)
k=1

® To determine the nearest cluster for each individual

Z = arg min {d?(xi,%k) }

35/62



Two-Step algorithm

e Step [h]: update centers X1, ...,Xx when labels 2" are known
1] _ 1 el
_[h+1 h
Xk = W Zi X
N i=1

[h+1], . ,i[/gH] are updated

® Step [h+ 1]: update labels z when centers X;

2’.["“] = arg min {d2(x;,i£(h+1])}

geeey
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lllustration of kmeans

—(0) —(1) | % —(0 1) | =(1) —(2 | % —(1)
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Decreasing inertia

Denoting by [h] the step h of the algorithm, z["l x[/]

The inertia depends on both quantities Iy (2!, xI"1)

Updating centers

I (217, <1 Z Z 22 (x;, =)

i=1 k=1

Updating labels
n K

W(Z[h+1],i[h+1]) _ Z Z Zi[:-l—l] d2(X;,iLh+1])

i=1 k=1

The criterion decreases at each step

(207, R1) > 1y (2 =010 > 1y (2, 00
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Convergence & initialization

® The inertia is a bounded suite, so the
algorithm converges within a finite
number of steps

® The solution is only a local minimizer :
depends on the initialization step

o Clustering algorithm are very sensitive to

initialization (try different points)

b Within-cluster distance
for 10,000 trials

a k-means clustering with k=3

Input d=472 d=384 d=384
C d=390 (@ d=386 @ d=402

P

2% ¥ 19% 15%

Figure 4 | Simulation of 10,000 trials of k-means clustering with k = 3 of
35 points (black), of which 20, 10, and 5 were centered on each of the

gray circles, respectively, and spatially distributed normally within the
circle with s.d. half of the circle radius. Centroids are indicated by colored
hollow points; initial centroids were randomly selected points from the data
set. (a) Evolution of a trial that results in the lowest total within-cluster
distance, d = 38.4. With each iteration, d generally drops. Points are shown
connected to and colored by their assigned centroid. (b) Histogram of the
total within-cluster distance for 10,000 trials. The lowest d = 38.4 solution
(a) was found in 1,236 (12%) of trials. Bar labels indicate figure panels in
which the solution is shown. (c,d) Two most common solutions, their d and
frequency observed. (e,f) Examples of solutions whose clusters do not follow
the original grouping of points. (g) Solution with largest d.

39
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4. Graph-based clustering
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Linear vs non linear methods

® Linear methods provides clusters that can
be separated by planes

® Recent developments propose to
generalize clustering beyond linear
methods

® Popular methods consist in constructing a
proximity graph between points to
represent interactions

Linear Separation

Non Linear separation

41
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Graph-based clustering in single cell genomics

® Single Cell transcriptomic data: given cell
expression, assign cells to cell-types

® Group cells according to their
transcriptomic proximities

® The graph represents distances between
cells

UMAP_2
°

5

GATAZ

Tumort
Stromal
Macrophage
Tumor2
Endothelial
LymphocyteT
GATA2

Stem
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Definition of a graph

A graph G = (V, ) is defined by a set of vertices V = {1,...,n} and a set of edges
E={(i,j) € V?, i~} directed or non directed

Adjacent Edge

Edge vertices
e o Isolated @ o

vertex

4—Self-loop
Varax 0‘9 verex (1 }——(2)

Path from vertex 1
to vertex 3

Directed Graph Undirected Graph

43 /62



Basic Features of graphs

w11 e Win
. . . A=
® Define the adjacency matrix of a graph
wWnp1 ... W
wj €ER, if i~ " nn
0 otherwise

® A graph can be binary: w;; € {0,1}
® Or weighted : w; € R

44 /62



From a dissimilarity matrix to a graph

w11 e Win

® How to construct the graph from the A=
data X7

® From any dissimilarity matrix (Gram
Matrix)

® Most popular method : neighborhood
graph (kNN graph)

® Clustering can be restated as finding
clusters of vertices

45 /62



knn-Graphs

Consider a dissimilarity matrix

Choose a number of neighbors (resolution
parameter)

For a given vertex, consider the k nearest
neighbors

Construct the proximity graph iteratively
Can also consider shared neighborhoods
Sparsification of the original dense graph

Need efficient methods on large datasets

e \ After
} Convergence

3-nearest
neighbors of v

O

Estimated

seed node v knn Graph
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Clustering strategy based on modules/community

single-cell graph

N

® In a network, a module is a densely s F N
con § oo i\/‘f; ‘
! nected SLfbgr.aph N | 2 5 ‘ / ‘lj.
® |t is a quantitative definition (maximum: 54 £ ¥\
clique) = ’ff &
C
® Modularity: what is the connectivity of §
nodes vs random connectivity 2 >
. G o i
® Find clusters such that the modularity is < T/\?l(lnc’ N :
maximal < graph % >
partitioning S PN
8 A o
= 0,3 Lo\ 4
« d
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The Graph-Cut problem

® How to partition a graph into subgraphs
with a given objective ?

® The size of a cut is the number of cut
edges

e Clustering by graph-cuts: smallest cut
that make homogeneous subgraphs

Best Cut

48 /62



Finding the best cut

® Vol(S) volume of subgraph S (nb of
nodes)

® Cut(S,S’) number of edges that link two
subgraphs S and S’

® The normalized cut value:

Cut(S,S') Cut(S,S")

no_ "
NormCut(S, S ) = VO|(5) + VOI(S,) Best Cut

® Avoids cuts that generate too-small
subgraphs

® The combinatorial complexity is too high,
need heuristics

49 /62



Modularity optimization using the Louvain Algorithm

® Approximation of a graph-cut problem Strong intra-class

connection

A cluster is equivalent to a module

If K clusters (module) with indicator
variables zj,, the modularity is

K K .-
&= 5 2o a4 - 5.))

Find z such that Mk(z) is maximal

Low between-class
connection

Strong intra-class
connection

50 /62



Extensions and generalizations

The Louvain algorithm is one example of
graph-based clustering methods

Widely used in single cell data analysis

Many hyper parameters to tune

Non Linear clustering is a very active field
of research

51
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5. Post Clustering Analysis
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Clustering analysis in a nutshell

® choose a distance

® choose an algorithm

® choose the number of clusters K

® repeat the analysis for 1 to Knax clusters
® choose the number of clusters

® check the stability of clusters

® interpret the clusters

e (lustering is non supervised, part of the analysis is subjective, so we need guidelines
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Elbow plot and model selection

® Choosing the number of clusters is a
model selection task

® To choose a model we need a measure of
quality of fit

n K

Tw(K) =Y Zud(xi, %)

i=1 k=1

e When K increases, lyy(K) decreases
because clusters are more and more
homogeneous

® The elbow plot consists in finding the

best trade-off between quality of fit and a
reasonable number of clusters

Total Within Sum of Square

N
o
o

-
(o)
o

1001

a
(@]

Optimal number of clusters
Elbow method

12345678 910
Number of clusters k
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Intuitions for model selection

Model selection is based on the bias-variance trade-off

® Bias : if a model has more parameters, it will approximate the data very precisely
® Variance : if a model has more parameters, the estimation error will increase
How to find the best trade-off between both trends ?

Model-selection criteria are based on penalized criteria:
Ck +Apen(K)

® (i is a contrast that decreases with the dimension

pen(K) is a penalty that increases with the dimension of the model

® ) is a penalty constant that tunes the trade-off
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Examples of model selection criteria (not exhaustive)

® The Akaike Information Criterion

AlCk = —2log lw(K) + 2K
® The Bayesian Information Criterion ::Z
BICk = —2log Iy (K) + K log(n)
® The Integrated Classification Likelihood :2:
K 400012345673910
ICLx = —2log Ty (K)+K Iog(n)—i-z ny log ny umberef custers. &
k=1
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Assessing cluster separation with the Silhouette score

Consider clustering results into K clusters with inferred labels (z1, ... ,Zk)

® For point /i that has been assigned to cluster k, compute the distance with points of the

same cluster 1
~ ~ 2
aj = E Z,'kZJ'kd (X,',XJ')
ne — 14
JF

Compute the distance with points of other clusters

1

. ~ ~ 42

b,' = min — ZZ;ijgd (X,‘,Xj)
£ ny =

J

Compute the silhouette score for each point
b,' — aj

i=— 7 ¢<l-11
s max {a;, b; } el ]
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Assessing cluster stability

Consider two clustering results PK, P/K’

(In)Stability of clustering results is defined as the expectation of distances between
partitions (like adjusted Rand Index)

E{d (PP}

® Use sub-sampling to perturb the data

B2 Zd< b)”PUJ(’,)

b,b’

To perturb the data (for instance): resampling, adding noise, use different dimension
reduction methods
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High dimensional setting

® distance-based methods are sensitive to
increases in dimension

® The geometry of data is modified in high
dimension

e Consider a sphere S(x, R) and a cube
C(x, R) centered on x € RP with radius R

Vol [C(x, R)] 2PRP

Vol [S(x, R)]  2RPmP/2/pl(p/2)

Vol [C(x, R)]
Vol [S(x, R)] pmo °

From C.Azencott
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Many points are needed to fill the space

® Number of points (xi,...,X,) needed to " 5 T
fill the cube [0, 1]” by
S(x1,1),...,5(xn, 1) fel
2w sl —
n 39 45630 57102 4210% 4] l
® High dimensional spaces are empty ! e :,; ———

® Points are far apart

Figure 1.3 Histograms of the pairwise-distances between n = 100 points sampled uniformly
in the hypercube [0, 1], for p = 2,10,100, and 1000.

From C.Giraud
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Clustering in high dimension

® Dimension reduction is mandatory for
clustering in high dimension

® Combine DR + clustering

® Use feature selection

® Try different DR methods

® Try different clustering methods

® |nterpret clusters in the input space !

61/62



References

® https://towardsdatascience.com/
® Introduction to Machine Learning (C. Azencott)

¢ Introduction to High Dimensional Statistics (C. Giraud)

[1] V. Y. Kiselev, T. S. Andrews, and M. Hemberg. Challenges in unsupervised clustering of
single-cell RNA-seq data. Nat Rev Genet, 20(5):273-282, 05 2019.

[2] J. Lever, Krzywinski M., and N. Altman. Principal component analysis. Nat Methods,
14:641-642, 2017.

62 /62


https://towardsdatascience.com/
http://cazencott.info/dotclear/public/lectures/IntroML_Azencott.pdf
https://www.imo.universite-paris-saclay.fr/~giraud/Orsay/Bookv3.pdf

	Introduction
	Hierarchical Clustering
	k-means clustering
	Graph-based clustering
	Post Clustering Analysis

