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Are machines learning ?

• Convergence of math/info/computer
science research

• Inspired by research in neuroscience and
cognition (and science fiction)

• Contemporary to high throughput data
acquisition

• Two basic ingredients: data and
algorithms
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Machine learning in Biology

• Data have grown in complexity and size
in all fields of biology

• Data are multimodal: sequences,
structures, spectra, images, molecular,
clinical, evolutionary

• Impossible to handle the analysis by
descriptive methods only

• Reproducible research

• Machine Learning in Biology has become
a field on its own
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The quantitative shift [? ]

• knowledge transfer of basic concepts in
ML for biologists

• training / testing

• over-fitting / under-fitting

• Linear / non linear

• Interpretability of ML methods

• Computational complexity / time
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The two sides of Machine Learning

Supervised Learning

• Observe (y1, x1), . . . , (yn, xn)

• Construct a predictor f : X → Y
• Define a loss function `(y , f (x)) to score

predictions

• Minimize the generalization error (new y
?)

→ Regression, classification

Non-Supervised Learning

• Observe (x1, . . . , xn)

• Describe the structure of X without
external information

• Group individuals ? Group variables ?

• Loss is more difficult to define

→ Dimension Reduction, Clustering
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Rough typology of ML methods
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The purpose of Dimension Reduction

• Visualization (> 2 variables)

• Multivariate analysis (beyond pairwise)

• Summary of the data

• Redundancy

• Reduce the data for downstream methods

Crabs dataset (n = 200,p = 8)
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An unprecedented challenge

• Genomics was precursor for data representation and visualization

• Gene Expression data ∼ 30, 000 variables

• Recent single-cell technologies: up to 106 cells

Publication cells tissue Seq. protocol

Cadwell et al. (2016) 46 visual cortex Smart-seq2

Tasic et al. (2016) 1,679 visual cortex SMARTer

Macosko et al. (2015) 44,808 retina Drop-seq

10x Genomics 1,306,127 brain cells 10x Gen.Chrom.

• Dimension reduction is mandatory for any analysis (clustering, visualization, inference)

8 / 98



High-dimensional data

X j
i = measurement for variable j on individual i

Xn×p =

 X j
i


1 . . . . . . . . . . . . p︸ ︷︷ ︸

variables

1
...

n

 invidivuals

• Ideal case: n grows and � p

• High dimension: p grows and � n

• Big Data: n and p grow
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Vectors of Rd

• x is a vector of Rd defined by a n−uplet
(x1, . . . , xd) (coordinates)

• Considering the canonical basis (d = 2):

e1 =

 1

0

 , e2 =

 0

1


• Its coordinates corresponds to a

decomposition on the unitary basis:

x ∈ R2, x = x1

 1

0

+ x2

 0

1



+
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Vectors of Rd

• A vector is a point in a space (here R2)

• Generalize for vectors of Rd

x ∈ Rd , x =
d∑

h=1

xheh

• By default, x is a column vector, x′ its
transpose

• Concatenate p column vectors
[x1, . . . , xp].

+
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Expression of 105 breast tumor samples ER(+/-)

Measure of the expression of two genes XBP1 and GATA3 for n = 105 samples

Each measure is denoted by xi =
[
xGATA3i , xXBP1i

]
Each point is a vector of R2

[? ]
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Vectors of Rd and basic operations: Addition

x + y =


x1 + y1

...

xd + yd


(x + y) = (y + x),

(x + y) + z = x + (y + z)

Associative, Commutative

14 / 98



Vectors of Rd and basic operations: Multiplication by
a scalar

∀λ ∈ R, λx =


λx1

...

λxd


λ(x + y) = λx + λy,

Linear Combination

(λ1 + λ2)x = λ1x + λ2x
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Dot Product between vectors

• The dot product • between two vectors is defined by the sum of the products of all
components

x • y = 〈x, y〉 = x′y =
d∑

i=1

xiyi , 〈x, y〉 = 〈y, x〉, 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉

• The dot product between two vectors is a scalar

• Basic properties:

〈x, y〉 = 〈y, x〉, 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉, λ〈x, y〉 = 〈λx, y〉 = 〈x, λy〉
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Norm of a vector and basic properties

• The euclidean norm (length of a vector)

‖x‖22 = 〈x, x〉 = x′x =
d∑

i=1

x2i

• Non negativity : ‖x‖2 ≥ 0

• Definiteness : ‖x‖2 = 0↔ x = 0

• Triangle Inequality : ‖x + y‖2 ≤ ‖x‖2 + ‖y‖2
• Homogeneity : ‖λ× x‖2 = |λ| × ‖x‖2, λ ∈ R
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Principal norms used in Machine Learning

• L1 norm or Manhattan norm:

‖x‖1 =
d∑

i=1

|xi |

• L2 norm or Euclidian norm:

‖x‖22 =
d∑

i=1

x2i

• L∞ norm or sup-norm:

‖x‖∞ = max
i=1,...,d

(
|xi |
) There are different ways to measure the

norm of a vector
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From norms to distances between vectors

• L1 distance or Manhattan distance:

d1(x, y) = ‖x− y‖1 =
n∑

i=1

|xi − yi |

• L2 distance or Euclidean distance:

d2
2 (x, y) = ‖x− y‖22 =

n∑
i=1

(xi − yi )
2

• L∞ distance or sup-distance:

d∞(x, y) = ‖x− y‖∞ = max
i=1,...,n

(
|xi − yi |

)
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What drives the choice of a distance ?

• L1 distance or Manhattan distance:

- Adapted to discrete inputs
- Robust to outliers
- Non differentiable

• L2 distance or Euclidean distance:

- Most common, differentiable
- Sensitive to dimension and outliers
- Sensitive to the scale of the different

inputs

• L∞ distance or sup-distance:

- Applied in logistical problems
- More specific, less used

https://towardsdatascience.com/
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Dot product and orthogonal projection (1)

• The orthogonal projection of y on x

yproj = λx , colinearity

y − yproj ⊥ x , orthogonality of residuals

• The proportionality coefficient is given by

λ =
〈y, x〉
‖x‖2

‖y‖22 = ‖yproj‖22 + ‖y − yproj‖22
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Dot product and orthogonal projection (2)

• Using trigonometry properties:

cos θ =
‖yproj‖2
‖y‖2

= λ
‖x‖2
‖y‖2

• The dot product is the length of x times
the length of the ortho. projection of y

• Orthogonality :

x ⊥ y↔ 〈y, x〉 = 0

‖y‖22 = ‖yproj‖22 + ‖y − yproj‖22
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Vectors of individuals, vectors of variables

• xi = (x1i , . . . , x
p
i )′ ∈ Rp is the vector describing individual i with p different variables

• xj = (x ji , . . . , x
j
n)′ ∈ Rn is the vector of variable j on n different individuals

• The data is stored in a matrix Xn×p such that

X =


x′1
...

x′n

 =
[

x1, . . . , xp
]

=

 x ji


1 . . . . . . . . . . . . p︸ ︷︷ ︸

variables ∈ Rn

1
...

n

 individuals ∈ Rp
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Centering a dataset (1)

• The empirical mean of xj :

x j =
1

n

n∑
i=1

x ji , xj = x j × 1n

• The empirical mean of xj is its projection
on the constant

x j =
1

n
(1, . . . , 1) • x =

1

n
〈1′n, xj〉

• The vector of means is the barycenter of
the data

x =
[
x1, . . . , xp

]
25 / 98



Centering a dataset: changing the origin

• Consists in removing the mean of each
variable

Xc =
[

x1 − x1, . . . , xp − xp
]

• Centering to avoid positional effects

• x becomes the new origin
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Scaling a dataset

• The empirical variance of xj :

var(xj) =
1

n

n∑
i=1

(x ji − x j)2

• It is the distance of variable xj to its mean

var(xj) =
1

n
‖xj − xj‖22 =

1

n
〈xj − xj , xj − xj〉 =

1

n
xjc • xjc

• The empirical variance is the length of the residuals (after centering)

• Scaling to standardize variables contributions (unitary variance)

X̃c =

[
x1 − x1

var1/2(x1)
, . . . ,

xp − xp

var1/2(xp)

]
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Expression of 105 breast tumor samples ER(+/-)
The data matrix is

Xc =
[

xGATA3c , xXBP1c

]
105×2

The expression of those 2 genes is very correlated: redundancy between columns
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Covariance and Correlation between variables

• The empirical covariance between
variables

c(xj , xj
′
) =

1

n

n∑
i=1

(x ji − xj)(x j
′

i − xj
′
)

r(xj , xj
′
) =

c(xj , xj
′
)√

var(xj) var(xj ′)

• Quantifies the expected co-variations
between variables

• If r(xj , xj
′
) ' 1 the two variables provide

the same information
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Distance and covariance

• Between-variables distance:

1

n
‖xjc − xj

′
c ‖2 =

1

n
‖xjc‖2 +

1

n
‖xj ′c ‖2 − 2

1

n
〈xjc , xj

′
c 〉

= var(xj) + var(xj
′
)− 2 c(xj

′
, xj)

• Normalized distance using centered and scaled variables

1

n
‖x̃jc − x̃j

′
c ‖2 = 2− 2 r(xj

′
, xj)

• The correlation coefficient is a distance measure between variables:

r(xj
′
, xj) = 1− 1

2
× 1

n
‖x̃jc − x̃j

′
c ‖2
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Correlation and distance between variables

• Pairwise distance between variables

S =


c(x1, x1) . . . c(xj

′
, xj)

. . .

c(xj , xj
′
) . . . c(xp, xp)


• Normalized distance: correlation matrix

R =


r(x1, x1) . . . r(xj

′
, xj)

. . .

r(xj , xj
′
) . . . r(xp, xp)


• Symmetric, invertible (semi definite positive)
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Total Inertia of a dataset

The global variance of a dataset for centered
variables

IT (X) =
1

n

n∑
i=1

p∑
j=1

(x ji − x j)2

=

p∑
j=1

var(xj)
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Inertia of a dataset

To generalize the notion of dispersion to a complete dataset:

IT (X) =
1

n

n∑
i=1

p∑
j=1

(x ji − x j)2
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Outline before PCA

• PCA is based on a change in coordinates

• Before performing PCA, focus on the
rotation of a dataset

• Change coordinates from 2D to 2D, then
generalize
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From 2D to 2D with rotation

• Find new coordinates Z to better represent X

• Define z1i the new coordinates of individual i on
axis 1 as linear combinations of the ancient
coordinates

z1i = v11x̃
1
i ,c + v12x̃

2
i ,c

• This operation resumes to a linear transform of xi
(old) to obtain z (new)

zi1 = x̃i ,cv1

• How to determine v1 =

 v11

v12


2×1

?
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New Coordinates

• In the example:

z1i = 0.83× GATA3i + 0.56× XBP1i

• For the best representation of X

v̂11 = 0.83, v̂12 = 0.56,

• Notation v̂ stands for optimized
coordinates

Original Data

Projected Data

Principal 
Components
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New coordinates in the matricial framework

• The coefficients are common to all
individuals:

z1 = v11x̃1c + v12x̃2c

=
[

x̃1c x̃2c

]
n×2

 v11

v12


2×1

z1 = X̃cv1

• Equation of a line with slope v1
• Centered data so no intercept

Original Data

Projected Data

Principal 
Components
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New coordinates in the matrix framework (1)

• First axis carries the biggest empirical variance

var(z1) = var
(

X̃cv1
)

= var
(
v11x̃1c + v12x̃2c

)
= v211 var

(
x̃1c
)

+ v212 var
(
x̃2c
)

+ 2v11v12 c(x̃1c , x̃
2
c)

• Using the standardized version (scaled)

var(z1) = v211 + v212 + 2v11v12 × r(x̃1c , x̃
2
c)

Minimize 
Approximation Errors

Maximize
Variance Components
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New coordinates in the matricial framework (2)

• To find the new coordinates: find v1 such that
var(z1) is maximal

var(z1) = v211 + v212 + 2v11v12 × r(x̃1c , x̃
2
c)

• Constraint for a normed basis: ‖v1‖22 = 1

• This ensures that the new basis is of unitary scale,
so that the information carried by the new axes
can be compared
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PCA as an optimization problem

• To find the first axis, find coefficients v1, s.t.

max
v1,‖v1‖22=1

{
var(z1)

}
= max

v1,‖v1‖22=1

{
var(Xcv1)

}
= max

v1,‖v1‖22=1

{
v1
(

X′cXc

)
v′1

}
= max

v1,‖v1‖22=1

{
v1Sv′1

}
• The solution of this optimization problem is explicit

v′1v1 = 1

Sv1 = λ1v1

• v1 (resp λ1) is the first eigenvector (resp eigenvalue) of the covariance matrix
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normed PCA as an optimization problem

• To find the first axis, find coefficients ṽ1, s.t.

max
ṽ1,‖ṽ1‖22=1

{
var(z1)

}
= max

ṽ1,‖ṽ1‖22=1

{
var(X̃c ṽ1)

}
= max

ṽ1,‖ṽ1‖22=1

{
ṽ1
(

X̃′cX̃c

)
ṽ′1

}
= max

ṽ1,‖ṽ1‖22=1

{
ṽ1Rṽ′1

}
• The solution of this optimization problem is explicit

ṽ′1ṽ1 = 1

Rṽ1 = λ1ṽ1

• ṽ1 (resp λ1) is the first eigenvector (resp eigenvalue) of the correlation matrix
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Eigen Representation of the data

• S contains the directions of maximal
variance of the data

• v1 ⊥ v2 and are normed (unit variance)

• (λ1, λ2) quantify the amount of variance
in each direction

• The eigen decomposition provides the
best representation of the data in terms
of variance

• Its the linear transform that makes the
new set of coordinates diagonal

First direction of 
maximum Variance

Second direction of 
Maximum Variance

Intensity of explained 
Variance
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Quality of the representation

• Eigenvalues quantify the inertia of the
dataset:

IT (X ) =
∑
k=1

Ik(X ) =
K∑

k=1

λk

• Percent of explained variance:

Contribk =
λk∑K
`=1 λ`

Contrib1:k =

∑k
h=1 λh∑K
`=1 λ`

First direction of 
maximum Variance

Second direction of 
Maximum Variance

Intensity of explained 
Variance
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Representation of individuals in the new coordinates

Orthogonal Projection 
of individuals

The new coordinates for individuals are
(
xi − x

)
vk
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Outline

• In a first step we changed coordinates for better representation

• From 2D to 2D, there is no dimension reduction !

• The approach is generalized from p variables to K principal components

zk =

p∑
j=1

vkj x̃
j
c = Xcv1

• Intuition: if vkj is high, variable j highly contributes to principal component zk
• From p to K (= 2) the information was compressed
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General Case with K principal components

• V[p×K ] =
[
v1, . . . , vK

]
, the eigen vectors of the covariance matrix

Sp×p =
1

n
X′X =

1

n

K∑
k=1

λkvkv′k

• U[n×K ] =
[
u1, . . . ,uK

]
, the eigen vectors of the Gram matrix

Gn×n =
1

p
XX′ =

1

p

K∑
k=1

λkuku′k

• Then we have (
XX′

)
uk =

√
λkXvk = λkuk(

X′X
)
vk =

√
λkX′uk = λkvk
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Low-rank approximation of X

• The rank of a matrix (r∗) is the number of linearly independent columns (unknown in
practice)
• From a statistical perspective, it is the number of independent coordinates that can

describe a dataset
• The initial dataset can be rewritten such that

X = Un×r∗V
′
r∗×p =

r∗∑
k=1

√
λkukv′k

• Since the rank is unknown, we select a number of components K , and then:

X ' Un×KV′K×p =
K∑

k=1

√
λkukv′k

• It is called the low-rank approximation of X
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PCA on the complete ER dataset - 1

• First examples on 2 genes without
dimension reduction

• PCA on the p = 8534 genes, n = 105
individuals

• Kmax = 8534 possible eigenvectors

• Contrib1:2 ' 22%

• Contrib1:63 ' 90%

• Contrib1:104 ' 100%

• Choosing 104 eigenvectors reduces the
dimension without too much loss

• Dimension reduction : from 8534 original
variables to 104 new variables
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PCA on the complete ER dataset - 2

• Represent the data in the new
coordinates (PCs)

• In the example the clusters (ER+/ER-)
are more separable in the new
representation

• Identify the contribution of genes to the
axes

• Essential to interpret the new
representation
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Quality of the representation of individuals

• An individual xi is well represented if it is
close to the axis zk
• Geometrically, xi − x is colinear to zk
• Compute

cos2 θ(xi − x, zk) =

((
xi − x

)
vk
)2

‖xi − x‖2‖vk‖2
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Contribution of individuals to the representation

The contribution of a xi is the proportion of carried by xi

contr(xi , zk) =

((
xi − x

)
vk
)2

nλk
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Properties of Principal components: the variable
point of view

• Start with p correlated (redundant) variables X̃c =
[

x̃1c , . . . , x̃
p
c

]
with

Rp×p =


r(x1, x1) . . . r(xj

′
, xj)

. . .

r(xj , xj
′
) . . . r(xp, xp)

 =
1

n
X̃′cX̃c =

K∑
k=1

λkvkv′k

• Get K new uncorrelated (non redundant) variables Z =
[

z1, . . . , zK
]

54 / 98



Correlation Circle

• Components are independent of variance
with var(zk) = λk

SZ =


λ1 0

. . .

0 λK


• Contribution of variables to axis:

c(xj , zk) = (xj)′uk = λkvjk

= r(xj , zk) for normed PCA

c(X,Z) = SZV
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Quality of representation of variables in PCs

• Check the quality of representation of variable xj on PC k

IT (X) =

p∑
j=1

r∑
s=1

r2(xj , zs) for normed PCA

• Correlation circle:

cos2
(
θ
{

xj , zk
})

=
r2(xj , zk)∑r
s=1 r2(xj , zs)

• Only variables with high cos2 can be interpreted !

• Contribution of variable xj

contr(xj , zk) =
r2(xj , zk)

λk
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Quality of representation of variables in PCs
Check the quality of representation of variables, close variables are not necessarily similar
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Summary

• PCA is the most widely used linear dimension reduction method

• It is based on a change in coordinates to represent the data in a way that preserves the
variability of the data

• The new coordinates are provided by the eigenvectors of the empirical variance matrix

• Check the percentage of explained variance and choose the number of components
accordingly

• Check the quality of representation of variables to interpret the axes

• Interpret the projection of individuals at the end

• Why does PCA make cluster more visible ?
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Matrix factorization: X ≈ UVT

Cells: U ∈ Rn×K

Genes: V ∈ Rp×K

}
Low dimensional representation

→ Low-rank representation of X
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Matrix factorization: X ≈ UVT

Data visualization: U
scatter plot (ui1, ui2)i=1:n

Embeddings

61 / 98



How to interpret the axes ?

• When genes contributes poorly to axis, their contribution can be put to zero

• Selected genes can be interpreted in terms of signature.
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How to cluster cells in terms of selected variables

• When signatures are selected in V, this can be used to create clusters of cells in U

Cell 
Clusters

• Compression allows to exhibit variables that make clusters more detectable
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Towards embedding methods

• PCA is based on the duality between the between-variables distance S = X′X/n and the
between individuals distance G = XX′/p

• U provides the new coordinates for the individuals

• V provides the new coordinates for the variables

• Creating a new representation thanks to a linear transform Z = XV′ ensures the same
transform for each point

• The linear nature of the transform ensures interpretability of PCA

• In the end, data vizualization focuses on the representations of individuals, called
embeddings.

• Considering embedding allows to extend the notion of dimension reduction to other
frameworks
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A primer with Multidimensional Scaling

• In many situations only the distance dii ′

between individuals (i , i ′) is available

• The objective of MDS is to find new
coordinates u1, . . . ,un that minimize:∑

i ,i ′

(
dii ′ − ‖ui − ui ′‖2

)2
• The information regarding the variables is

not considered (not available)

65 / 98



Extending the notion of distance with kernels

• Linear methods are mainly based on
euclidean distances

• These distances depend on a dot product

• This dot product can be generalized by
the so-called kernel

K (xi , xi ′) = 〈φ(xi ), φ(xi ′)〉

• φ is called the feature map and is
unknown

• Grounds most non linear methods
(kernel-PCA, kernel MDS, etc)
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Accounting for particular characteristics of data
When data are counts, introduce a non-negativity constraint and use NMF

67 / 98



Outline

1. Introduction

2. Vectors and distances

3. Defining a new representation

4. Changing Coordinates

5. Dimension Reduction by compression

6. Conclusion, extensions

7. Alternatives to PCA, non linear embedding methods

8. Annexes

9. Principal Components and orthogonal subspaces

68 / 98



Beyond Linear projections

• Linear methods are powerful for planar structures

• High dimensional datasets are characterized by multiscale properties (local / global
structures)

• May not be the most powerful for manifolds

• Non Linear projection methods aim at preserving local characteristics of distances
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Stochastic Neighbor Embedding [? ]

• (x1, . . . , xn) are the points in the high dimensional space Rp,

• Consider a similarity between points:

pi |j =
exp(−‖xi − xj‖2/2σ2i )∑
k 6=i exp(−‖xk − xj‖2/2σ2k)

, pij = (pi |j + pj |i )/2N

• σ smooths the data (linked to the regularity of the target manifold)

• σ is chosen such that the entropy of p is fixed to a given value of the so-called perplexity

exp

−∑
ij

pij log(pij)
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Visual inspection of the influence of σ[? ]
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tSNE and Student / Cauchy kernels

• Consider (y1, . . . , yn) are points in the low dimensional space R2

• Consider a similarity between points in the new representation:

qi |j =
exp(−‖yi − yj‖2)∑
k 6=i exp(−‖yk − yj‖2)

• Robustify this kernel by using Student(1) kernels (ie Cauchy)

qi |j =
(1 + ‖yi − yj‖2)−1∑
k 6=i (1 + ‖yi − yk‖2)−1
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Optimizing tSNE

• Minimize the KL between p and q so that the data representation minimizes:

C (y) =
∑
ij

KL(pij , qij)

• The cost function is not convex[
∂C (y)

∂y

]
i

=
∑
j

(pij − qij)(yi − yj)

• Interpreted as the resultant force created by a set of springs between the map point yi
and all other map points (yj)j . All springs exert a force along the direction (yi − yj).

• (pij − qij) is viewed as a stiffness of the force exerted by the spring between yi and yj .
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tSNE examples on single cell RNASeq data 1 [? ]
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tSNE examples on single cell RNASeq data 1 [? ]
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Effect of Hyperparameters : Perplexity

tSNE does not account for heteroscedasticity

https://distill.pub/2016/misread-tsne/
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tSNE does not account for between-cluster distance
50 points

200 points

What about random noise ?
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Catching Complex Geometries
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Properties of t-SNE

• good at preserving local distances (intra-cluster variance)

• not so good for global representation (inter-cluster variance)

• hence good at creating clusters of points that are close, but bad at positionning clusters
wrt each other

• preprocessing very important : initialize with PCA and feature selection plus log
transform (non linear transform)

• percent of explained variance ? interpretation of the q distribution ?
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A taxonomy of Dimension Reduction Methods [? ]
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Conclusions of a comparative study [? ]

• local methods suffer from the choice of the smoothing (neighborhood) parameter

• Kernel PCA suffers from the choice of the Kernel to correctly approximate the manifold.

• Setting the optimization problem is the key (convex or not), trivial solutions, local
optima, computationally feasible

• nonlinear techniques for dimensionality reduction are, despite their large variance, often
not capable of outperforming traditional linear techniques such as PCA.
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Useful links

• https://towardsdatascience.com/

• PCA for datascience

• Link to a tuto on dot products

• Wiki for Linear Transforms

• Book for the introduction to machine learning (C.-A. Azencott)

• Book for the introduction to machine learning (James, Witten, Hastie, Tibshirani)

• PCA in ecology http://pbil.univ-lyon1.fr/ade4/

• PCA in general http://factominer.free.fr/index_fr.html
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Expectation / Variance for matrices

• Given Yi ∈ Rp, A ∈ Rq×p,
E(AYi ) = A× E(Yi ),

• The variance of a linear combination of Y

V(AYi ) = AVp×p(Yi )A
′,
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Decomposition of Rp into orthogonal subspaces

• Let us consider p orthogonal subspaces
(
Ek

)
k=1,p

each subspace spanned by an

individual axis (dim 1):

Rp =

p⊕
k=1

Ek ,

• Orthogonal projection of Xi ∈ Rp on a subspace Ek = vect(Zk)

ProjEk
(Xi ) = XiVk ∈ R

• The inertia of X wrt Ek measures the proximity of Ek from X

IEk
(X ) =

1

n

n∑
i=1

‖Xi − ProjEk
(Xi )‖22

• Let E⊥k denotes the orthogonal complement of subspace Ek .
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Pythagore - Huyguens Theorem

IT (X ) = IE (X ) + IE⊥(X ) = I
(

ProjE (X )
)

+ I
(

Projk⊥(X )
)
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Construction of principal components (PC)

• Resume the data X by a new dataset Zn×K , K ≤ p and K fixed

• The new axis spans the 1-dim subspaces
(
Ek = vect(Zk)

)
k

∀k, k ′, Ek ⊥ Ek ′

• Z = [Z1, . . . ,ZK ] constitute independent PCs (easy interpretation)

• Zk ∈ Rn is defined as a linear combination of the variables

Zk = XVk , Vk =
(
Vjk

)
j
∈ Rp

• Vp×K = [V1, . . . ,VK ] is the matrix of contributions (weights) of variables
(
X j
)
j

Zn×K = Xn×pVp×K
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Decomposition of the Inertia on the PCs

IT (X ) =
1

n

n∑
i=1

p∑
k=1

‖Xi − ProjEk
(Xi ) + ProjEk

(Xi )‖2

=
1

n

n∑
i=1

p∑
k=1

‖Xi − ProjEk
(Xi )‖2 +

1

n

n∑
i=1

p∑
k=1

‖ProjEk
(Xi )‖2

=
1

n

n∑
i=1

p∑
k=1

‖Xi − Zik‖2 +
1

n

n∑
i=1

p∑
k=1

‖Zik‖2

=
1

n

n∑
i=1

p∑
k=1

‖Xi − XiVk‖2 +
1

n

n∑
i=1

p∑
k=1

‖XiVk‖2
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Orthogonal Components with maximal variance

• We want to resume the variability of the dataset

• Find the PCs that explain the maximum of the observed variance:

1

n

n∑
i=1

‖ProjEk
(Xi )‖2 =

1

n

n∑
i=1

‖Zik‖2 =
1

n
V ′k

(
X ′X

)
Vk =

1

n
V ′kΣVk

• The optimization scheme is iterative, and for the kth PC:

V̂k = arg max
V∈Rp ,‖V ‖22=1

(1

n
V ′X ′XV

)
with Zk ⊥ (Z1, . . . ,Zk−1)
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Constrained optimization

• To account for the orthogonality constraint, we introduce the Lagrange multipliers

L(V , µ) =
1

n
V ′X ′XV − µ

(
V ′V − 1

)
∂L

∂µ
= V ′V − 1

∂L

∂V
= 2X ′XV − µV

• Which gives the following solution

V ′V = 1

X ′XV = µV

• The optimal solution is provided by the eigenvectors of the covariance matrix Σ
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Spectral decomposition of symmetric real matrices

• Let A ∈ Rn,n a symmetric real matrix

• Spectral decomposition theorem: there exists λ1 ≥ . . . ≥ λn ∈ R and an orthogonal
basis {U1, . . . ,Un} of Rn such that

A =
n∑

k=1

λkUkU
′
k

• The spectral decomposition can also be written:

A = U diag(λ1, . . . , λn)U ′
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Positive Semi-Definite Matrices

• A symmetric real matrix is positive semi-definite (sdp) if

∀ ∈ Rn, x ′Ax ≥ 0

• Semi-Definite positiveness is equivalent to λ1 ≥ . . . ≥ λn ≥ 0, since

x ′Ax =
n∑

k=1

λk〈x ,Uk〉2

• For any n × p matrix A, the matrices A′A and AA′ are symmetric positive semidefinite
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Singular Value Decomposition Theorem

• Any matrix A ∈ Rn,p of rank r can be decomposed as

A =
r∑

k=1

µkUkV
′
k

• r = rank(A)

• µ1 ≥ . . . ≥ µr > 0

• {µ21, . . . , µ2r } are the non-zero eigenvalues of A′A and of AA′

• {µ1, . . . , µr} are called the singular values of A

• {U1, . . . ,Ur} and {V1, . . . ,Vr} are two orthonormal families of Rn and Rp such that:

AA′Uk = µ2kUk , A′AVk = µ2kVk
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Singular Value Decomposition of X ′X and XX ′

•
(
U1, . . . ,UK

)
, the eigen vectors of the Gram matrix

Gn×n =
1

p
XX ′ =

1

p

K∑
k=1

µ2kUkU
′
k

•
(
V1, . . . ,VK

)
, the eigen vectors of the covariance matrix

Σp×p =
1

n
X ′X =

1

n

K∑
k=1

µ2kVkV
′
k

• Then we have (
XX ′

)
Uk = µkXVk = µ2kUk(

X ′X
)
Vk = µkX

′Uk = µ2kVk
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Low-rank approximation of X (1)

• X ∈ Rn,p, s.t. rank(X ) = r , there exists
→ µ1 ≥ . . . ≥ µr > 0, with D = diag(µ1, . . . , µr ),
→ {µ1, . . . , µr}, are the singular values of X
→ two orthogonal matrices Ũ ∈ Rn×r and Ṽ ∈ Rp×r with

Ũ ′Ũ = Ir , Ṽ ′Ṽ = Ir ,

U = ŨD, V = Ṽ D,

• Such that

X = UV ′ = ŨDṼ ′ =
r∑

k=1

µk Ũk Ṽ
′
k

• Then we have
X ′Ũk = µk Ṽk , XṼk = µk Ũk
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Low Rank approximation of X (2)

• If rank(X ) = r (unknown), in practice we choose K ≤ p to provide a ”low-rank”
approximation of X .

• Denoting X̂K = U1:KV
′
1:K this approximation of rank(X̂K ) = K

• PCA can be restated as the approximation of X st

‖X − X̂K‖2F = min
B∈Mn,K ,rk(B)=K

‖X − B‖2F =
r∑

k=K+1

µ2k

• PCA provides the best low-rank approximation for the Frobenius norm

X̂K = arg min
B∈Mn,K ,rk(B)=K

‖X − B‖2F
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