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1. Introduction
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Are machines learning ?

e Convergence of math/info/computer
science research

® |nspired by research in neuroscience and
cognition (and science fiction)

e Contemporary to high throughput data
acquisition

® Two basic ingredients: data and
algorithms
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Machine learning in Biology

Data have grown in complexity and size
in all fields of biology

® Data are multimodal: sequences,

structures, spectra, images, molecular, N:.. - ———
clinical, evolutionary NN
o
® Impossible to handle the analysis by < r
. . . , =
descriptive methods only - s @“u il = ey
L] Reprod uC|b|e research Bioimage informatics  Systems Biology Drug Design Precision medicine
Image segmentation  Network inference Virtwal screening Patient stratification
. . . . Classification Gene prioritiration Chemo-genomics Progrostic & Predictive
® Machine Learning in Biology has become High-Cantent Screening  Dota ntegration  Side effectprediction NG ot processing

a field on its own



The quantitative shift [? ]

® knowledge transfer of basic concepts in
ML for biologists

® training / testing

® over-fitting / under-fitting

® Linear / non linear

® |nterpretability of ML methods

e Computational complexity / time

a Used to train i Used to assess
model i performance

Validation : Testlng
k-fold cross-validation I
e Learning rate f Early stopping
Too low
2 2
K Too high S
Validation set
Training set
Training time Time
d
. Data point . .2
s 0 %% o o6 % o s o
ol . oo o, ol ‘
S50 SRR «--Model %% . 29 ]
oo e 0 o' ¢o oo
. N J P &
Underfit o Good fit “ Overfit L4
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The two sides of Machine Learning

Supervised Learning Non-Supervised Learning

® Observe (y1,x1), .- (Vn,Xn)

® Observe (x1,...,%n)
e Construct a predictor f : X — Y

® Describe the structure of X without

® Define a loss function ¢(y, f(x)) to score external information
redictions C .
P S o ® Group individuals ? Group variables ?
® Minimize the generalization error (new y o Loss | difficul def
?) oss Is more difficult to aefine

. I — Dimension Reduction, Clustering
— Regression, classification
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Rough typology of ML methods

Machine
Learning

Type of Learning

Categories of Algorithms

Support P
Classification Vector D':zra";'sni:m Naive Bayes NNe?;Lisc:r
Machines
Supervised
Learning
Linear o
= < SVR, Ensemble Decision Neural
Develop predictive Regression Reg(;is'\:mn GPR Methods Trees Networks
model based on both
input and output data
Dimensionality
reduction PCA-MCA MDS CCA-Parafac Kernel PCA
methods
u ised kMeans,
nlf:;)rilrivnl;e Clustering Fuzzy C-Means : Mixture
Neural Hidden Markov

Discover an internal
representation from
input data only

Networks Model
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The purpose of Dimension Reduction

o it arapace lenghn orapace widh oody_depin
Cor:0907 Cor:0979 Cor:0965 Cor:0.988

Visualization (> 2 variables)

i
£

Multivariate analysis (beyond pairwise)

)

o

E — c 0893 Vt:u:“us w”:sss
Summary of the data ‘ whed il

i

§
® Redundancy . / &*}, ‘ o | g
® Reduce the data for downstream methods AR o | 8
v

Crabs dataset (n = 200,p = 8)




An unprecedented challenge

® Genomics was precursor for data representation and visualization
® Gene Expression data ~ 30,000 variables

® Recent single-cell technologies: up to 10° cells

Publication cells tissue Seq. protocol
Cadwell et al. (2016) 46  visual cortex Smart-seq?2
Tasic et al. (2016) 1,679 visual cortex SMARTer
Macosko et al. (2015) 44,808 retina Drop-seq
10x Genomics 1,306,127 brain cells 10x Gen.Chrom.

® Dimension reduction is mandatory for any analysis (clustering, visualization, inference)

98



High-dimensional data

X! = measurement for variable j on individual /

Xn><p =

X/

variables

® |deal case: n grows and > p
¢ High dimension: p grows and > n

e Big Data: n and p grow

invidivuals
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Outline

2. Vectors and distances
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Vectors of R¢

® x is a vector of R? defined by a n—uplet
(x1,...,%q) (coordinates)

¢ Considering the canonical basis (d = 2):

1 0

® |ts coordinates corresponds to a
decomposition on the unitary basis: #
€2

1 0
XER2, X = X1 + X2

0 1

[l

€1
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Vectors of R¢

A vector is a point in a space (here R?)

Generalize for vectors of R?

By default, x is a column vector, X’ its

d
xeRd, X = g Xp€h
h=1

transpose

Concatenate p column vectors

[Xl,...

s Xp)-

€2

[l

x:lwl ] € R?
T2

Z2

x1

12/98



Expression of 105 breast tumor samples ER(4-/-)

Measure of the expression of two genes XBP1 and GATAS3 for n = 105 samples

Each measure is denoted by x; = [ XI.GATA3

Each point is a vector of R?

a

XBP1

X XBP1

[y

All

ER-

ER*

0 2

Projection onto PC1 [? ]
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Vectors of R? and basic operations: Addition

X+Yy
X1+ w1
xX+y = :
Xd + Yd Yy
(x+y) = (y+x),

(x+y)+z = x+(y+2)

Associative, Commutative X

14 /98



Vectors of R and basic operations: Multiplication by
a scalar

)\Xl

YA ER, Mx =

AXy AX
Alx+y) = Ax+ Ay,

Linear Combination

(A1 + A2)x = A1x + Aox X

15/98



Dot Product between vectors

® The dot product e between two vectors is defined by the sum of the products of all
components

d
xey=(xy)=xy=> xy, (xy) =(x), (xy+z) =(xy) +(x2)
i=1
® The dot product between two vectors is a scalar

® Basic properties:

x,y) =(y,x), (xy+2z)=(xy) +(x2), Axy) =xy) =(x,Ay)
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Norm of a vector and basic properties

The euclidean norm (length of a vector)

d
X1 = (x,%) =x'x =) xf
i=1

® Non negativity : ||x|2 >0

Definiteness : ||x|][2 =0+ x =0

Triangle Inequality : ||x + yl||2 < [|x|l2 + |lyl|2

Homogeneity : ||A X x||2 = |A] X [|x]l2, A €R
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Principal norms used in Machine Learning

e /1 norm or Manhattan norm:

d
Ixlls = Il

i=1

e [2 norm or Euclidian norm:

d
x5 = xF
i=1

® [°° norm or sup-norm:

Ixlloo = max_(Ixi)

ey

)13 = % + 23

| 1X[lr = |z1] 4 [22]

L1

There are different ways to measure the
norm of a vector
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From norms to distances between vectors

e /! distance or Manhattan distance:

n

dh(xy) = x—yl =3 xi - i

i=1

e /2 distance or Euclidean distance:

n

Bxy) = lx—yl3 = (xi— )
i=1

® [°° distance or sup-distance:

77777
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What drives the choice of a distance ?

Euclidean Cosine Hamming
o o
e |1 distance or Manhattan distance: o Alfolififo]o]
- Adapted to discrete inputs \ o g HA EOM
- Robust to outliers *
- Non differentiable Manhattan Minkowski Chebyshev
e /2 distance or Euclidean distance: P

- Most common, differentiable

- Sensitive to dimension and outliers

- Sensitive to the scale of the different
inputs

® | > distance or sup-distance: “
- Applied in logistical problems —

- More specific, less used

https://towardsdatascience.com/ o


https://towardsdatascience.com/

Dot product and orthogonal projection (1)

o (x,3) = [yproill2 x [l
® The orthogonal projection of y on x
N
Yoroj = AX ,  colinearity Y /4:&
Y — Yproj L. X, orthogonality of residuals 3 x
® The proportionality coefficient is given by (x,y) = cost|[x|l2lyl|2
0 Yproj

N2 x)
[1x[|2

2 2 2
Y12 = [1Yprojll2 + Iy — Yprojll2
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Dot product and orthogonal projection (2)

e Using trigonometry properties:

HyPr0j||2 _ [[x]|2
yll2 yll2

cosf =

® The dot product is the length of x times
the length of the ortho. projection of y

e Orthogonality :

x Ly« (y,x)=0

(%,¥) = ¥projll2 x [Ix[[2
&

<

(x,y) = cos0|[x|2[ly]l2
0 Yproj

2 2 2
Y12 = [1Yprojll2 + Iy — Yprojll2
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Outline

3. Defining a new representation
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Vectors of individuals, vectors of variables

* x; =(x;,. P)" € RP is the vector describing individual i with p different variables

, X;
(x,’, ,x{,) € R" is the vector of variable j on n different individuals

® The data is stored in a matrix X« such that

/
X1 1

X=|: Z[xl,...,xp}z X! : ¢ individuals € RP

~

variables € R”

24 /98



Centering a dataset (1)

® The empirical mean of x/:

1 n
?J:—E x, % =% x1,
n 1
i=1

® The empirical mean of x/ is its projection

on the constant

L1, 1)ex= 11, )
n

X =2(1,...
X n(,

® The vector of means is the barycenter of

the data

S R
X; = (,1‘/1c| ,xieq, xles)

25 /98



Centering a dataset: changing the origin

e Consists in removing the mean of each
variable *
[ ]
L
X = xl—il,...,x”—ip} o« " o
(]
Aokt
e Centering to avoid positional effects (el_e._,_e,) Y
® X becomes the new origin N /<X\_X_’.X::>
(]
(] .. ° [ ]
x; = (zley, 2?es, xles)
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Scaling a dataset

® The empirical variance of x/:

var(xl) = = 3 (o — %)?

n<

® It is the distance of variable x; to its mean
R 1 . 1.
var(d) = Z|I¥ = ¥|5= (¥ — ¥, ¥ — %) = —x_ exL
n n n
® The empirical variance is the length of the residuals (after centering)
® Scaling to standardize variables contributions (unitary variance)
1

g _ | X —X xP —xP
vart/2(x1)”" "7 varl/2(xp)

1
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Expression of 105 breast tumor samples ER(4-/-)

The data matrix is

X, = [ XSATA3’X?:(BP1 ]
105x%x2
a b c
2 . . 2
o e, Al
— e’ he "Q:-' ~
T O Lo .'-,.,...__ T O -
[24) LL ] oM
x . .- X
-2 LR -2
PR : ER*
—4 -4
4 2 0 2 4 2 0 2 4 2 0 2
GATA3 GATA3 Projection onto PC1

The expression of those 2 genes is very correlated: redundancy between columns
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Covariance and Correlation between variables

® The empirical covariance between

variables
: o 1 1 H : i’ o
() = 3200 )] )
L, J )

var(x/) var(x/")
® Quantifies the expected co-variations
between variables

e If r(x/,x/") ~ 1 the two variables provide
the same information

-':.. o ¢
L L
. ..ﬂ :.'."_..
et . o °

.

n.n ® e M
n.. ='

.
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Distance and covariance

® Between-variables distance:
1, . 0 1, 7o 1, 05 1 .
e e A e YA LB X A
. . .
= wvar(x)) +var(x)) —2¢c(x ,x/)

® Normalized distance using centered and scaled variables

]. ; i’ i :
332 = J' s

7||xc_xc|| —2—2r(x ,X)

n

® The correlation coefficient is a distance measure between variables:

g 1 1,
(o x) =1 5 xR -

30/98



Correlation and distance between variables

® Pairwise distance between variables

c(xt,xt) ... (¥, %)

.
c(x,x") ... c(xP,xP)
® Normalized distance: correlation matrix

r(xt,x1) ... or(x, %))

r(d,x") ... r(xP,xP)

® Symmetric, invertible (semi definite positive)

symboling
normalized-losses
wheel-base |
length
width

height [

curb-weight
en -Si.
gine-size o0
bore

stroke
compression-ratio
horsepower
peak-rpm
city-mpg
highway-mpg
price
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Total Inertia of a dataset

The global variance of a dataset for centered
variables

32/98



Inertia of a dataset

To generalize the notion of dispersion to a complete dataset:

XBP1

_4/

PR HERE
4 2 o0 2
GATA3

1 o,
= 209 -F)
i=1 j=1
c
All
ER-
ER*

4

2 0 2
Projection onto PC1
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Outline

4. Changing Coordinates
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Outline before PCA

e PCA is based on a change in coordinates

e Before performing PCA, focus on the
rotation of a dataset

® Change coordinates from 2D to 2D, then
generalize
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From 2D to 2D with rotation

® Find new coordinates Z to better represent X

® Define z;; the new coordinates of individual i on
axis 1 as linear combinations of the ancient
coordinates

~1 2
Z1i = V11X ¢ + V12X ¢

® This operation resumes to a linear transform of x;
(old) to obtain z (new)
Zj1 = Xj V1
: Vi1
® How to determine vi = ?
V12

2x1

36
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New Coordinates

® |n the example:

z! = 0.83 x GATA3, + 0.56 x XBP1;

® For the best representation of X
vi1 = 0.83, Vi = 0.56,

® Notation v stands for optimized
coordinates

X2

X; = (X) . X?)

Original Data

v

Principal
Components

U = (U2, U?)

Projected Data

Xl

37/98



New coordinates in the matricial framework

® The coefficients are common to all

individuals:

31 32

zZy — V11XC+V12XC
V-
_ {il ;(/2} 11
¢ € Inx2 Vio

2x1
z1 = Xevi

® Equation of a line with slope vy

® (Centered data so no intercept

X2

X; = (X,' . X?)

Original Data

v

Principal
Components

U = (U3, U?)

Projected Data

Xl
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New coordinates in the matrix framework (1)

® First axis carries the biggest empirical variance

X2
Var(zl) = Var (Xcvl) Minimize
Approximation Es
= var (V11§:’; + v12§g> \lh‘“‘ X - V|2

= v121 var (ii) + v122 var (ig) + 2v11vio c(ii,ii)

//\ XV

Maximize
Variance Components

~1 ~ X!
var(z1) = Vi +vh +2viivip x r(XL, X2)

¢ Using the standardized version (scaled)
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New coordinates in the matricial framework (2)

® To find the new coordinates: find v; such that

var(zy) is maximal o

minimize
2 2 4o <1 32
var(z1) = viy + vip + 2viivio X r(Xg, X2) X; vi

e Constraint for a normed basis: |jv1]/3 =1
® This ensures that the new basis is of unitary scale, maximize

so that the information carried by the new axes 0/ 7 (z1,%;) = cos 01|z |||

can be compared !
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PCA as an optimization problem

® To find the first axis, find coefficients vy, s.t.

max {var(zl)} = max {var(XCvl)}

v, [va]3=1 v, [va]3=1

= max {vl (X/CXC)VII}
vi[v[3=1

= max {vlsvll}

Vlv”‘”“%:l
® The solution of this optimization problem is explicit

vivp = 1

SV1 = )\1V1

® v; (resp A1) is the first eigenvector (resp eigenvalue) of the covariance matrix
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normed PCA as an optimization problem

® To find the first axis, find coefficients v1, s.t.

_ max
v, [[vi]13=1

{ var(zl)}

max { var()?cvl)}

vy, [[va[3=1

max {Vl (XICXC)VII }
v, [ 3=1

max {Vl RV’l}

v, [V f13=1

® The solution of this optimization problem is explicit

A
RV,

= 1
= \vp

® v; (resp A1) is the first eigenvector (resp eigenvalue) of the correlation matrix

42 /98



Eigen Representation of the

data

S contains the directions of maximal
variance of the data

vi L vy and are normed (unit variance)
(A1, A2) quantify the amount of variance
in each direction

The eigen decomposition provides the
best representation of the data in terms
of variance

Its the linear transform that makes the
new set of coordinates diagonal

First direction of
maximum Variance

Second direction of
Maximum Variance

»

Intensity of explained
Variance
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Quality of the representation

e Eigenvalues quantify the inertia of the Second direction of First direction of
Maximum Variance maximum Variance K
dataset: N :
K
IT(X) =D h(X)=>_ A . .
Intensity of explained
k=1 k=1 Variance
. . N
® Percent of explained variance: 2
. Ak
Contribx = —¢
26:1 Ae
k
: _1 Ah
Contriby. = D’K;l
ZZ:1 Ae
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Representation of individuals in the new coordinates

» Orthogonal Projection
of individuals
All
ER-
ER*
)\2V2
> 4 2 0 2

Projection onto PC1

The new coordinates for individuals are (x; — X) vy
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Outline

5. Dimension Reduction by compression
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Outline

In a first step we changed coordinates for better representation

® From 2D to 2D, there is no dimension reduction !
® The approach is generalized from p variables to K principal components
p .
Z, — Z ijié = XCV1
ji=1

Intuition: if vy is high, variable j highly contributes to principal component z,

From p to K(= 2) the information was compressed
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General Case with K principal components

® Vipxk] = [V1..-.,Vk], the eigen vectors of the covariance matrix
K
1,0 1 ,
Spxp = XX = > Aevievi
k=1
® Upxk] = [u1,...,uk], the eigen vectors of the Gram matrix

1 1
Goxn = XX = =" Nuu
p p i

® Then we have

(XX,)uk = \/)\T(Xvk:)\kuk
(X'X)ve = vV AXup = Mvg

48 /98



Low-rank approximation of X

The rank of a matrix (r*) is the number of linearly independent columns (unknown in
practice)

From a statistical perspective, it is the number of independent coordinates that can
describe a dataset

The initial dataset can be rewritten such that
r*
X = Uan*V;*Xp = Z \/ )\kukV;(
k=1

Since the rank is unknown, we select a number of components K, and then:

K
X =~ Uk Visp = Z VAugv)
k=1

It is called the low-rank approximation of X

49 /98



PCA on the complete ER dataset - 1

® First examples on 2 genes without
dimension reduction

Q.

® PCA on the p = 8534 genes, n = 105 = 14
individuals 3 12-
® Kmax = 8534 possible eigenvectors _é 104
e Contriby.o ~ 22% g 8
e Contriby.e3 ~ 90% g 6
e Contriby.104 ~ 100% s Y
® Choosing 104 eigenvectors reduces the § (2)
dimension without too much loss D 20 40 60 80 100

® Dimension reduction : from 8534 original Principal component
variables to 104 new variables

50/98



PCA on the complete ER dataset - 2

@

® Represent the data in the new
coordinates (PCs)

® In the example the clusters (ER+/ER-)
are more separable in the new
representation

¢ |dentify the contribution of genes to the
axes

Projection onto PC2

® Essential to interpret the new .
representation -40 -20 0 20 40 60
Projection onto PC1
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Quality of the representation of individuals

® An individual x; is well represented if it is X;
close to the axis z,

® Geometrically, x; — X is colinear to z,

e Compute

2
29 v <(Xi _i)Vk)

52 /98



Contribution of individuals to the representation

The contribution of a x; is the proportion of carried by x;

<(x,- — i)vk>2

Ny

contr(x;, zx) =

, ° ®
(m.();‘u‘) ° Xir
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Properties of Principal components: the variable
point of view

e Start with p correlated (redundant) variables )N(C = [ )“(i, %P ] with
r(xt,x1) ... (¥, %)) p
. 1 v/'v /
Rp><p - . = ;chc = ;)\kvkvk
r(d,x") ... r(xP,xP)
® Get K new uncorrelated (non redundant) variables Z = [ zl,,_,,zK }
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Correlation Circle

e Components are independent of variance
with var(zx) = A\«
A1 0
Sz =
0 Ak

e Contribution of variables to axis:

c(xj,zk) = (xj)’uk = Ak Vjk
= r(x/,z,)for normed PCA
«(X,Z) = SyV

Zy

r(x7,z2)

r(x7,2;)

41
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Quality of representation of variables in PCs

® Check the quality of representation of variable x/ on PC k
p .
Ir(X) = Z r’(x/,2z5) for normed PCA

® Correlation circle: o
; re(x/,z
cos? (H{XJ,zk}) = #
Zs:l r (XJ7 ZS)
® Only variables with high cos? can be interpreted !

e Contribution of variable x/ -
re(x’/, zk)

contr Xj Z,) =
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Quality of representation of variables in PCs

Check the quality of representation of variables, close variables are not necessarily similar
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Outline

6. Conclusion, extensions
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Summary

e PCA is the most widely used linear dimension reduction method

® |t is based on a change in coordinates to represent the data in a way that preserves the
variability of the data

® The new coordinates are provided by the eigenvectors of the empirical variance matrix

® Check the percentage of explained variance and choose the number of components
accordingly

® Check the quality of representation of variables to interpret the axes
® Interpret the projection of individuals at the end
® Why does PCA make cluster more visible ?
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Matrix factorization: X ~ UV’

Cells: U e R™K

G V e RPXK } Low dimensional representation
enes: €

Q

uv’

— Low-rank representation of X
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Matrix factorization: X ~ UV’

Q

Data visualization: U
scatter plot (uj1, Uj2)i=1:n
Embeddings

comp2

uv’
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How to interpret the axes ?

® When genes contributes poorly to axis, their contribution can be put to zero

Bl = selected genes (v # 0) 2
1 . . j . . p
St
p

1 Jj P 1 .. K
1 1
i ~ UVT

X U

® Selected genes can be interpreted in terms of signature.
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How to cluster cells in terms of selected variables

® When signatures are selected in V, this can be used to create clusters of cells in U

Bl = selected genes (v # 0) Cell v’
Clusters j . p
1= s s 1 -0) 1 TR
p
1 Jj P
1 1
’ & uv’

X U

e Compression allows to exhibit variables that make clusters more detectable
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Towards embedding methods

e PCA is based on the duality between the between-variables distance S = X’X/n and the
between individuals distance G = XX'/p

® U provides the new coordinates for the individuals
® V provides the new coordinates for the variables

e Creating a new representation thanks to a linear transform Z = XV’ ensures the same
transform for each point

® The linear nature of the transform ensures interpretability of PCA

® |n the end, data vizualization focuses on the representations of individuals, called
embeddings.

e Considering embedding allows to extend the notion of dimension reduction to other
frameworks
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A primer with Multidimensional Scaling

® |n many situations only the distance d;;
between individuals (i, ") is available

® The objective of MDS is to find new
coordinates uy, ..., u, that minimize:

2
>~ (dir = llu; = up]?)
ii’

® The information regarding the variables is
not considered (not available)

dij - distance between each pair of points

Cc
dy, = Distance (B,C)
Be
dy5 = Distance (A,C)

d,, = Distance (A,B)
.Y

A ..,..,.....,...,....,
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Extending the notion of distance with kernels

® | inear methods are mainly based on
euclidean distances

® These distances depend on a dot product

® This dot product can be generalized by 2
the so-called kernel :

K(xi,xir) = (p(xi), d(x;)) e

® ¢ is called the feature map and is
unknown

® Grounds most non linear methods
(kernel-PCA, kernel MDS, etc)
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Accounting for particular characteristics of data

When data are counts, introduce a non-negativity constraint and use NMF

~ ) W, k) H(k,j) = WH(,))
el N—— N—— N’
facial features importance of features approximation
— - = in jth image of jth image
i - :"1 gt g
- - = - {
e . 4 |
- ' e
- ae .
sl [tk i
T - ——
il
B - - 7 —
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Outline

7. Alternatives to PCA, non linear embedding methods
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Beyond Linear projections

® Linear methods are powerful for planar structures

High dimensional datasets are characterized by multiscale properties (local / global
structures)

May not be the most powerful for manifolds

Non Linear projection methods aim at preserving local characteristics of distances
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Stochastic Neighbor Embedding [? ]

® (x1,...,Xp) are the points in the high dimensional space RP,
e Consider a similarity between points:

exp(—x — xj||*/207)
> ki XP(= I3k — x;[|2/207%)

pilj = . pij = (Piyj + pjji) /2N

® o smooths the data (linked to the regularity of the target manifold)

® o is chosen such that the entropy of p is fixed to a given value of the so-called perplexity

exp | — Y _ pjjlog(py)
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Visual inspection of the influence of o7 ]

a Perplexity = 50 b Perplexity = 5 c Perplexity = 500
.. ,2 D " >.~ Non-neurons
h @ Pvalb
1 & z 4 O s . vip ot
1 : 20 '.‘- ﬁ g o o y z
o g ‘ g »%‘ ) L6 IT VISp
- : = X , i
| ]
O _W\ o Sst *E’I L5 NP
. L5-6 IT ALM
¢ L4-5 1T VISp s *
L2/31T “‘ L5PT
oM L5 IT ALM
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tSNE and Student / Cauchy kernels

e Consider (yi,...,Yyn) are points in the low dimensional space R?

® Consider a similarity between points in the new representation:

G = exp(—|lyi — yI*)
Yo ki exp(=lyk — yil12)

® Robustify this kernel by using Student(1) kernels (ie Cauchy)

q— (Ll =)
b iy — e
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Optimizing tSNE

® Minimize the KL between p and g so that the data representation minimizes:

Cly) = Z KL(py, qij)

® The cost function is not convex
9C(y)
2] =Sy - @i )
y i ;
® Interpreted as the resultant force created by a set of springs between the map point y;
and all other map points (yj)j. All springs exert a force along the direction (y; — y;).
[

(pij — qij) is viewed as a stiffness of the force exerted by the spring between y; and y;.
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tSNE examples on single cell RNASeq data 1 [? ]

a Macosko et al. 2015 b Shekhar et al. 2016 C Harris et al. 2018
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tSNE examples on single cell RNASeq data 1 [? ]

a N=25000 b N=1306127
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Effect of Hyperparameters : Perplexity

“w .t
e

Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100
Step: 5000 Step: 5000 Step: 5000 Step: 5000 Step: 5000

tSNE does not account for heteroscedasticity

] 3 v @
o
- e
° o
¥ : :
v gy
. X P
- s#“',
Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100
Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000

https://distill.pub/2016/misread-tsne/
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tSNE does not account for between-cluster distance

50 points

P B3 .
s ;‘ +
P kS
® - aen . .
” .
i ¥
>% £y “
Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100
Sten: 5000 Sten: 5000 Sten: 5000 Sten: 5000 Sten: 5000
200 points s .
5w L &
(4
re ® g
' L
Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100

Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000

What about random noise ?

Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100
Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000
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Catching Complex Geometries

Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100
Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000

Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100
Step: 5000 Step: 5000 Step: 5000 Step: 5000 Step: 5000

Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100
Step: 5,000 Step: 5000 Step: 5000 Step: 5000 Step: 5000
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Properties of t-SNE

® good at preserving local distances (intra-cluster variance)
® not so good for global representation (inter-cluster variance)

® hence good at creating clusters of points that are close, but bad at positionning clusters
wrt each other

® preprocessing very important : initialize with PCA and feature selection plus log
transform (non linear transform)

® percent of explained variance 7 interpretation of the g distribution ?
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A taxonomy of Dimension Reduction Methods [?

e | e
o] pm—

Full spectral Sparse spectral linear models
A e
Technique Parametric Computational __ Memory
Euclidean dists Geodesic distan Kemel-based Diftusion distanc Structon thm*‘““"”‘ Local tangent. A none U(Dyl
o e el ) B p— el Ty om)
no k O(n*) 0(n?)
no K(-) O(n®) O(n?)

k O((nk)*)
Lt 0w On?)
no k Opm?)  O(pn?)
k

PCA KlmdFCA L ‘

O@m?)  O(pn?)

Laplacian Eig
Hessian LLE o O(m?)  Om?)

o k Opn?)

Sammon mapping o none 00?)
Autoencoders yes | metsine Ow)
d Yes ok Oumd)
Manifold charting Yes Oimd) _ O(nmd)
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Conclusions of a comparative study [? ]

® |ocal methods suffer from the choice of the smoothing (neighborhood) parameter
o Kernel PCA suffers from the choice of the Kernel to correctly approximate the manifold.

® Setting the optimization problem is the key (convex or not), trivial solutions, local
optima, computationally feasible

® nonlinear techniques for dimensionality reduction are, despite their large variance, often
not capable of outperforming traditional linear techniques such as PCA.
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Useful links

® https://towardsdatascience.com/

® PCA for datascience

® Link to a tuto on dot products

e Wiki for Linear Transforms

® Book for the introduction to machine learning (C.-A. Azencott)

® Book for the introduction to machine learning (James, Witten, Hastie, Tibshirani)
® PCA in ecology http://pbil.univ-1lyonl.fr/aded/

® PCA in general http://factominer.free.fr/index_fr.html
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https://towardsdatascience.com/
https://pca4ds.github.io/
https://www.youtube.com/watch?v=LyGKycYT2v0
https://en.wikipedia.org/wiki/Transformation_matrix
http://cazencott.info/dotclear/public/lectures/IntroML_Azencott.pdf
https://hastie.su.domains/ISLR2/ISLRv2_website.pdf
http://pbil.univ-lyon1.fr/ade4/
http://factominer.free.fr/index_fr.html
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Outline

9. Principal Components and orthogonal subspaces
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Expectation / Variance for matrices

® Given Y; € RP, A c RI*P,
E(AY;) = A x E(Y)),

® The variance of a linear combination of Y

V(AY)) = AV p(Y))A',

85/98



Outline

86 /98



Decomposition of R’ into orthogonal subspaces

® | et us consider p orthogonal subspaces (Ek)k:1 , each subspace spanned by an
individual axis (dim 1):
P
R? = P Ee.
k=1

® Orthogonal projection of X; € RP on a subspace Eyx = vect(Zx)
PrOjEk(X,') =XiVk eR

® The inertia of X wrt E; measures the proximity of Ex from X
1 n

g (X) =~ > 11X — Projg, (X)113
i=1

® |et EkL denotes the orthogonal complement of subspace Ej.
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Pythagore - Huyguens Theorem

RP — R3 E+ =R
4{
=
9
&
Projg(X)
E =R?

I7(X) = Ie(X) + Igi (X) = /(ProjE(X)) + I(ProjkL (X))
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Construction of principal components (PC)

Resume the data X by a new dataset Z,«x, K < p and K fixed

® The new axis spans the 1-dim subspaces (Ek = vect(Zk))k

Vk, k', Ex L Ep

Z =|2,...,Zk] constitute independent PCs (easy interpretation)

Z, € R" is defined as a linear combination of the variables

Zie =XV, Vi= (\/jk)j e RP

Voxk = [Vi,..., Vk] is the matrix of contributions (weights) of variables (Xj)j
Zoxk = XnXprxK
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Decomposition of the Inertia on the PCs

I7(X)

1

1

1

n

A
SHILE

i=1 k=1
n p

59 e

i=1 k=1
n p

S

i=1 k=1
nop

2.2 X

i=1 k=1

Projg, (Xi) + Projg, (X)|?

Projg, (X))|1* + ZZ | Projg, (Xi)II?

Ilkl
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Orthogonal Components with maximal variance

® \We want to resume the variability of the dataset

® Find the PCs that explain the maximum of the observed variance:

quProJEk I =251z = 2y (xx) v = Lz

/—1

® The optimization scheme is iterative, and for the kth PC:

1
Ve = argmax <fv’x’xv) with Ze L (Z1,. .., Zk1)
VeRre,||V|3=1""

91/98



Constrained optimization

® To account for the orthogonality constraint, we introduce the Lagrange multipliers

1
L(V.p) = SVXXV fu<v’v - 1)

ot = Vv-1
O
oL
— = 2X'XV —puVv
oV a
® Which gives the following solution
v'v =1
X'XV = uVv

® The optimal solution is provided by the eigenvectors of the covariance matrix
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Spectral decomposition of symmetric real matrices

® let A€ R™" a symmetric real matrix

® Spectral decomposition theorem: there exists A\; > ... > A, € R and an orthogonal
basis {Us, ..., Up} of R” such that

n
A=) NUU;
k=1
® The spectral decomposition can also be written:

A= Udiag(A1,..., An)U’
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Positive Semi-Definite Matrices

® A symmetric real matrix is positive semi-definite (sdp) if
VeR" xXAx >0

® Semi-Definite positiveness is equivalent to Ay > ... > A, > 0, since

X' Ax = Z Ak (x, Ug)?
k=1

® For any n X p matrix A, the matrices A’A and AA’ are symmetric positive semidefinite
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Singular Value Decomposition Theorem

® Any matrix A € R"P of rank r can be decomposed as

A=) UV

k=1
® r =rank(A)
® 1 >...>2u >0
e {12 ..., 2} are the non-zero eigenvalues of A’A and of AA’
® {u1,..., .} are called the singular values of A
o {Ui,...,U} and {V4,...,V,} are two orthonormal families of R” and RP such that:

AA U = 12Uy, AAV, = 12V,
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Singular Value Decomposition of X’X and XX’

o (Ul, ey UK), the eigen vectors of the Gram matrix

Goxn = fxx' Zukukuk

[ (Vl, e VK), the eigen vectors of the covariance matrix

1 1 &
Lpxp = ;X/X =, Zﬂivkvli
k=1

® Then we have
(XX VU = meXVi = pig Uk
(X'X)Vie = mX'Uc = pi Vi
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Low-rank approximation of X (1)

o X € R™P, s.t. rank(X) = r, there exists
— p1 > ... > gy >0, with D = diag(pa, . .., p1r),
— {u1,... ,ur} are the singular values of X
— two orthogonal matrices U € R"™*" and V € RPX" with

vu=1, VV=I,
U=UD, V=VD,
® Such that .
X=U0V'=U0DV => UV

® Then we have N _ B B
X Uk = Vi,  XVie = U
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Low Rank approximation of X (2)

e If rank(X) = r (unknown), in practice we choose K < p to provide a " low-rank”

approximation of X.
® Denoting )?K = Ui.k V., this approximation of rank()A(K) =K

® PCA can be restated as the approximation of X st

X — X% = X — B|2 =
[ ke B, m'n H 17 = Z 115
k=K+1

e PCA provides the best low-rank approximation for the Frobenius norm

Xy = argmin || X — B||%
BEM, k., rk(B)=K

98 /98



	Introduction
	Vectors and distances
	Defining a new representation
	Changing Coordinates
	Dimension Reduction by compression
	Conclusion, extensions
	Alternatives to PCA, non linear embedding methods
	Annexes
	Principal Components and orthogonal subspaces

