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Outline

1. The multi-loci model, algebra of linear models
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General Model with many loci

The one-locus model :
E(Yj | xi5) = pix;j

The multilocus model without interaction/epistasis

Yu | XI_] Z:ul U
The multilocus model with interaction/epistasis of order 1

BOY [ x5) = Yl + 30 S0t x )

ijl iyl i'je

® ctc ...
The model could be complexified, at what cost ?

GWAS provide millions SNPs: model the impact of all SNPs on a phenotype.
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General presentation of linear models

® | et us consider Y a response vector of size n, and X a matrix of regressors, of size n x p

The entries of X can be binary (ANOVA) or continuous (regression) or both

p is the total number of regressors (features)

We consider the linear model :
E(Y | X) = X3

The relationship between the response and regressors is a linear combination of
parameters 3 € RP.
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The least-square method (LS)

e The estimation of 3 consists in finding an estimator 3 so that the model E(Y | X) is
not too far from the observations

~

B = argmind?®(Y,E(Y | X))

BERP

= argmind2(Y,X,6)
BERP

B = argmin |Y — X33
BERP

® The LS estimator of 3 minimizes the euclidean distance between the observations and
the model.

e The best solution is ¥ = X@, the best linear predictor of Y based on X.
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Model Space

® Linear model: E(Y | X) = X3

® Solution are a linear combination of features
U= X6

e £(X) = Span(x!,...,xP), the vector space
spanned by the columns of X

YU € £(X), U=X6

49



Orthogonal projection (1)

Consider Y — Y, the residuals (error term) of the model

e The minimizer Y is of the form:

Y -_Y|2 = in |lY —UJ|_?
| I3 Ryl | 5

® This minimization has an explicit solution: the orthogonal projection of Y onto £(X)

If we consider P,x, the orthogonal projector onto £(X), such that
Y=PY, PP=P, P?=P

® How can we derive the orthogonal projector in terms of X 7
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Orthogonal projection (2)

e The idea is that the residuals Y — Y should be orthogonal to £(X)
vie{l,....,p}, (&, Y-Y)=0
® Which provides the normal equations
X (Y=¥) =X (Y-XxB) =0
® Suppose that n>> p, and rank(X) = p, we have
1

P=(XX)""X

B=(XX)"'XY
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Statistical interpretation of the LS-estimator

The least-square estimator is a projection estimator

S = X'X is the empirical covariance of regressors (including their dependencies)
B=S1XY

° B . generalized correlation coefficient normalized by the dependencies between regressors

If features are highly correlated (redundancy), S~! is degenerate

The feature-based (marginal) analysis vs. global analysis that accounts for dependencies
between regressors.
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Example of correlation between features

- .

weight Pearson
Correlation

-10 -05 00 05 10

® Prostate Cancer data [? |, n =97, p=10 o8 oo
® Predict PSA levels using clinical covariates o -om
® High correlation between features 0w oz
® Redundancy between features 03 oos
g

s@&& Q@p N \@@‘f\ &
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Example of correlation between features

Prostate Cancer data [? |, n =97, p =10

Predict PSA levels using clinical covariates

High correlation between features

Pgg4s

Redundancy between features oeseon

Iweight

Ibph

age

ag
Ibph
Iweight
gleason
Pgg4s
svi

Icp

Ipsa
Icavol
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Example of correlation between features

summary (model.full)
[1] 0.5221043

Call:
Im(formula = lpsa ~ ., data = prostate.train) Icavol
Residuals:

Min 1Q  Median 3Q Max jpsa
-1.64870 -0.34147 -0.05424 0.44941 1.48675
Coefficients: Iep

Estimate Std. Error t value Pr(>|tl)

(Intercept) 0.4292 1.5536 0.276 0.78334 svi
lcavol 1.0466 0.1950 5.366 1.47e-06 **x
lweight 2.2623 0.8224 2.751 0.00792 ** Pggas
age -1.2477 0.8938 -1.396 0.16806
1bph 0.2123 0.1032 2.056 0.04431 * gleason
svi 0.3515 0.1423 2.469 0.01651 *
lcp -0.2924 0.1566 -1.867 0.06697 . Iweight
gleason -0.2012 1.3716 -0.147 0.88389
pEEA4s 0.3737 0.2151 1.738 0.08755 . Ibph

age

Some coefficients have show variance

Ibph
Iweight
gleason
pgg4s
Ipsa
Icavol
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Outline

2. Increasing the dimension of linear models
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Prediction errors when p increases

® What is the impact of dimensions on the prediction errors
1 G p
Y -Y[3=0(%)
® |f we add new individuals : n - ocoand p<< n
1 12
;”Y = Y[z =0
® |f we add new features: p — oo and p>n

1 ~
_IY=YIE=0()
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Interpretation of the features contribution

® Can we determine the set of contributing features ?
Vie{l,...,p}, Bi#0
® We can perform a test followed by multiple testing
My {8=0}

® Use the LS-estimator, note the marginal strategy

® We can suppose that among p features, only s* are non null
{1,...,p} =S US

So:{j, B =0}, Si:{j, B #0}
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Sparsity assumption

This hypothesis can be restated with the norm of the parameter

p
1Bllo = 1(g20y ="
=1

Then if we suppose that the number of non-null parameters s* < n

*

1 .
I¥-¥B=0(%) —o
n n

Unfortunately, S; is unknown, with complexity Ch

® The sparsity assumption has consequences on the optimization algorithm to find B
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Constrained optimization

® The LS-estimator is the solution of:

B = argmin|lY — X483
Berp

® The constrained estimator:

~

B, = argmin|Y — X3
IBlo<s

® This can be reformulated in

By = argmin|[Y — X33 + |8l
Bere

® )\ is a hyper parameter to balance the intensity of the constraint, to be tuned
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Penalized estimators

® The approach can be generalized:

By = argmin|[Y — XB|3 + Apen(3)
eRpP

® pen(A3) is a penalty function that scores the complexity of the model
® The LASSO estimator penalizes by the intensity of the coefficients

p

pen(B) = [|1BllL = > _ I8

j=1

® The RIDGE estimator penalizes by the square of the coefficients

P
pen(8) = |IBI5 =D _ 57
j=1
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Outline

3. The bias-variance trade-off
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General presentation

® We have some data recording on the same individuals (Y, Xj)i=1.
These data are characterized by a joint distribution P(Y, X)

® \We suppose that Y is the response variable, X are the features, supposed fixed

P(Y, X) = P(Y | X)P(X)

To learn the relationship between Y and X we suppose that:

Yi=f(Xi) +e;i

f: a model to links the features to the response (unknown)

® ¢;: random prediction errors, centered E(g;) = 0, often supposed i.i.d.
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What is f ?

® We want to minimize the prediction error by finding f such that

f=arg m@in E [(Y - cp(X))2]

The best prediction of Y at every point X in terms of quadratic risk is the conditional
expectation:
F(X) =E(Y | X)

® |n linear regression we suppose that the conditional expectation is linear wrt X

Then the determination of the model consists in estimating (3 (parametric model)
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What is a model collection ?

® We define a model by specifying the class of functions f, for instance

Fo {fx :50}

Fexp - {fx :e_iwx}

® A model is characterized by its complexity and size

® \We propose a class of model, among which we would like to find "the best”
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Loss function and minimization criterion

® Define a loss function that scores the quality of fit of the model
((Y, £(X))

® The loss function depends on the statistical model and on the objectives

(Y, f(X)) = %Z |Y; — F(X;)||3, least squares
i=1
1 n
= - Zl max (O, 1-— Y,-f(X,-)) hinge

e The estimator f of a model f is a minimizer of the loss:

f = argmin {e(Y,f(X))}
feF
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The train set

® Training set : the response and the features are jointly observed
D={(V,X),i=1,...,n}
® An estimator is a function of the train set

fD: arg min {E(Y,f(X))}
feF,(Y,X)eD

e Statistical properties of an estimator:

Byx() = [ 50 Tolx.y)dP(Y. X)
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Properties of an estimator

® | et us suppose that there is a true model: f*

® The bias: . ~
Bias(f) = Ev x (f*(X) - f(X))

The Variance: R R
V(F) = Vvx (X))

The Mean Square error:

~ ~

MSE(F) = By x (7(X) - A(X))Q _ Bias(F)? + V(F)

The prediction errors:

~

Pred(f) = Ey x (Y - ?(X))2
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Properties of the

LS estimator in linear regression

The bias:

The Variance:

The Mean Square error:

The prediction errors:

0

@)

Bias(3)
V(B) = o2 (X'X)~
MSE(B) = o (X'X)

Pred(8) = 2P 4 52
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Risk of an estimator

® Central concept 1: the model collection does not necessarily catch the true model :

¢ F

The oracle is the best possible estimator if all information was available

® From Vapnik and Chervonenskys (~1960s) the risk of an estimator

R(F) = E||f* — f||> = E||f* — foracte + foracle — 7|

The Approximation error
EHf* - f;ﬂracle”2

Estimation error R
]EHforacle - f||2

® How to control the estimation error 7 How to compute the approximation error ?

27 /49



High Complexity Model

learned ]/”\

best foracle

true f*

Approx Err < Estimation Err

Low Complexity Model

~

ed f

best foracle

true f*
Approx Err > Estimation Err
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Outline

4. Generalization error and cross validation
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Need to assess the generalization error

® The estimator has been trained on the training set D:

fp = argmin {e(Y,f(X))}
feF,(Y,X)eD

® The estimator is expected to have good properties on the train set D: the learning error

1

Ntrain

1

Ntrain

(060 = oL [¥o - ko = 2 [

® What would be its performance on another set 7 The test set T

1

MNtest

Pred (?(XT)) - Yr— fp(xT)Hz - Y- XTBDH2

MNiest
® The Learning Error can dramatically underestimate the Generalization Error
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Cross-validation : K-fold scheme

e Split the data into K partitions " Validation Training
o =A{1,...,n} Fold Fold
AN
To=JZx, |1Tul~K/n Tst R
k —_
® For each fold, define a train and test g 2nd | | | | | |
4
Di=Ti, Ti=To\ Dy g oo [ ||
® Train the model on the train set g 4th | | | | | |
A | v
fp, = arg r’%lkn {K(Y, f(X))} 5th | | | | I_l
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Cross-validation : K-fold scheme

® Estimate the generalization error on the test set

Predu(7) = 7 3 H(¥inFou(X)

i€Tk

Average all prediction errors on all folds

K
Pred(F) = o _ Preci (7)
k=1

This approach learns the model K times

When K = n this is called cross-validation
Choose K ~ 5 —10.
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COMMENTARY

Pitfalls in the Use of DNA Microarray Data for
Diagnostic and Prognostic Classification

Richard Simon, Michael D. Radmacher, Kevin Dobbin, Lisa M. McShane

DNA microarrays have made it possible to estimate the level
of expression of thousands of genes for a sample of cells. Al-
though biomedical investigators have been quick to adopt this
powerful new research tool, accurate analysis and interpretation
of the data have provided unique challenges. Indeed, many in-
vestigators are not experienced in the analytical steps needed to
convert tens of thousands of noisy data points into reliable and
interpretable biologic information. Although some investigators
recognize the importance of collaborating with experienced bio-
statisticians to analyze microarray data, the number and avail-
ability of experienced biostatisticians is inadequate. Conse-
quently, investigators are using available software to analyze
their data, many seemingly without knowledge of potential pit-
falls. Because of serious problems associated with the analysis
and reporting of some DNA microarray studies, there is great
interest in guidance on valid and effective methods for analysis
of DNA microarray data.

however, the emphasis is on developing a gene expression-based
multivariate function (referred to as the predictor) that accu-
rately predicts the class membership of a new sample on the
basis of the expression levels of key genes. Such predictors can
be used for many types of clinical management decisions, in-
cluding risk assessment, diagnostic testing, prognostic stratifi-
cation, and treatment selection. Many studies include both class
comparison and class prediction objectives.

Class discovery is fundamentally different from class com-
parison or class prediction in that no classes are predefined.
Usually the purpose of class discovery in cancer studies is to
determine whether discrete subsets of a disease entity can be
defined on the basis of gene expression profiles. This purpose is
different from determining whether the gene expression profiles
correlate with some already known diagnostic classification.
Examples of class discovery are the studies by Bittner et al. (3)
that examined gene expression profiles for advanced melanomas
and by Alizadeh et al. (4) that examined the gene expression
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Jacob and Speed Genome Biology (2018) 19:97

https://doi.org/10.1186/513059-018-1481-6 Genom e Bio | Ogy

The healthy ageing gene expression @
signature for Alzheimer’s disease diagnosis: a
random sampling perspective

Laurent Jacob'" ® and Terence P. Speed?

Abstract

In a recent publication, Sood et al. (Genome Biol 16:185, 2015) presented a set of 150 probe sets that could be used in
the diagnosis of Alzheimer's disease (AD) based on gene expression. We reproduce some of their experiments and
show that their signature is indeed able to discriminate between AD and control patients using blood gene
expression in two cohorts. We also show that its performance does not stand out compared to randomly sampled
sets of 150 probe sets from the same array.

34 /49



Outline

5. Regularization and Penalization
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Strategy

Low Variance High Variance

The model with the highest number of : ‘
parameter has low bias and high variance
Prevent overfitting
Improve interpretability
® Improve prediction accuracy 4 ‘ @

[ ]
Low Bias

High Bias
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Penalized Empirical Risk

® The empirical risk minimization ensures low approximation error (low bias)
n
min Y (Y, f(X))

feF
=

® We want to control the estimator errors (variance) by the complexity of the model

® Minimize the penalized empirical risk

~ 1<
f\ = argmin— L(Y;, (X)) + Apen(F
\ = rgming 3 (¥ F(X) + A pen(Z)

® Accept some bias provided the variance is reduced: the shrinkage strategy
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Preventing degeneracy with the Ridge penalty in
Regression

® Come back to the linear regression model:
Y=XB+E

® Consider the penalized risk

n

p
RAYiB) = -3 (Y~ XBP + 2 Y &

i=1 j=1

® The Ridge estimator is

B = (XX + ADTIXY
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Intuition behind the ridge strategy

When features are highly correlated and/or p increases, X'X becomes degenerate

The Ridge penalty regularized the empirical covariance matrix of features

Sy = X'X + Al

The LS estimator is such that

B

if A =0 we get the OLS.
if features are independent X’'X = |

~ridge LS

= (S x),@ (1-x874) 8

~ridge ~LS
A 1+AB

39 /49



Intuition behind the ridge strategy

The penalty introduces some bias

The penalty reduces the variance:

~ridge

V(B ) = 0281 xS x Sl < V(B")

When X\ — 0 there is no biais but the variance increases

When A\ — oo there is high biais but the variance decreases
A trade-off should be made by calibrating A.

Dependent variables are grouped

Does not perform selection, appropriate for prediction ( low interpretability )
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6. Feature selection
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Feature selection

This has been one of the hot topic in machine learning for years

We can suppose that among p features, only s* impact the response
{1,...,p} =S US:

So:{j. B =0}, Si:{j, B #0}

® Suppose that the underlying efficient model would be
E(Y | X) ~ Xs,8s, = Z XiiB;
JES
[ ]

Increase prediction accuracy, improve interpretability s* < p.
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Optimization strategies

® Many options: exhaustive, iterative approach (stepwise), forward-backward selection,
stepwise
® Need an algorithm to find the subset and a model selection criterion to select the
number of features
® The old ways : find the highest correlated feature
i = argmaxcorr(Y,x/)
J
J» = argmaxcorr(Y,x | x})
J
® Works if p is small, and cross correlations not too high S
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J. R. Statist. Soc. B (2005)
67, Part2, pp. 301-320

Regularization and variable selection via the
elastic net

Hui Zou and Trevor Hastie
Stanford University, USA

[Received December 2003. Final revision September 2004]

Summary. We propose the elastic net, a new regularization and variable selection method. Real
world data and a simulation study show that the elastic net often outperforms the lasso, while
enjoying a similar sparsity of representation. In addition, the elastic net encourages a grouping
effect, where strongly correlated predictors tend to be in or out of the model together. The elastic
net is particularly useful when the number of predictors (p) is much bigger than the number of
observations (n). By contrast, the lasso is not a very satisfactory variable selection method in the
p > n case. An algorithm called LARS-EN is proposed for computing elastic net regularization
paths efficiently, much like algorithm LARS does for the lasso.

Keywords: Grouping effect; LARS algorithm; Lasso; Penalization; p > n problem; Variable
selection
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Selecting with the LASSO

Least Absolute Shrinkage and Selection Operator

Consider the penalized risk

n

p
IS XA 15

i=1 j=1

The solution is not explicit in the general case : need optimization techniques

Different optimization strategies to find the best solution

Has now become a standard in machine learning
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What happens if features are independent ?

® The orthogonal case : S = X’X = I the LASSO has an explicit solution

. A .
B}asso = max (0, 1——— > X ﬂjLS
187

® This is called a thresholding estimator

® In the general case S # I, the LASSO thresholds features while accounting for their
correlations
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calibration of the hyperparameter

® Penalized estimators depend on the hyperparameter A : should be tuned!
® Grid Search: compute B)\ for A € [Amins Amax]
® Select the best of the best estimator BX

® A training data set is a dataset used during the learning process and is used to fit the
parameters:

e A validation data set is a dataset used to tune the hyperparameters of predictor.

® A test set is an additional dataset used only to assess the performance (i.e.
generalization) of a fully specified predictor.

® |n all cases, after tuning the parameters and selecting a model, you should fit the chosen
model on the complete dataset (not only on the train dataset) to define the final
predictor.
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Cross Validation for calibration [? ]

d

LU

2 1N
RRUTLTTTIR T
4 NN
5 i

Figure 3 | K-fold cross-validation involves splitting the data set into K
subsets and doing multiple iterations of training and evaluation. The metric
(for example, F, score) from all iterations is averaged. (a) A strategy with

K =5 without model selection. Training sets and test sets are used to
derive prediction statistics. (b) Nested K-fold cross-validation with model
selection. This strategy uses a validation set for model selection using the
strategy of a. The best model is then tested on the separate test set. Gray

b
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Test

Model 3
LTI
T
T
LI
I

bars indicate samples not used at the represented stage.
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