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General Model with many loci

• GWAS provide millions SNPs: model the impact of all SNPs on a phenotype.
• The one-locus model :

E(Yij | xij) = µixij

• The multilocus model without interaction/epistasis

E(Yij | xij) =
L∑
`=1

µ`i x
`
ij

• The multilocus model with interaction/epistasis of order 1

E(Yij | xij) =
∑
ij`

µ`i x
`
ij +

∑
ij`

∑
i ′j`′

γ``
′

i ,i ′x
`
ij × x`

′
i ′j

• etc ...
• The model could be complexified, at what cost ?
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General presentation of linear models

• Let us consider Y a response vector of size n, and X a matrix of regressors, of size n× p

• The entries of X can be binary (ANOVA) or continuous (regression) or both

• p is the total number of regressors (features)

• We consider the linear model :
E(Y | X) = Xβ

• The relationship between the response and regressors is a linear combination of
parameters β ∈ Rp.
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The least-square method (LS)

• The estimation of β consists in finding an estimator β̂ so that the model E(Y | X) is
not too far from the observations

β̂ = arg min
β∈Rp

d2
(
Y,E(Y | X)

)
= arg min

β∈Rp
d2
(
Y,Xβ

)
β̂ = arg min

β∈Rp
‖Y − Xβ‖2

2

• The LS estimator of β minimizes the euclidean distance between the observations and
the model.

• The best solution is Ŷ = Xβ̂, the best linear predictor of Y based on X.
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Model Space

• Linear model: E(Y | X) = Xβ

• Solution are a linear combination of features

U = Xθ

• L(X) = Span(x1, . . . , xp), the vector space
spanned by the columns of X

∀U ∈ L(X), U = Xθ
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Orthogonal projection (1)

• Consider Y − Ŷ, the residuals (error term) of the model

• The minimizer Ŷ is of the form:

‖Y − Ŷ‖2
2 = min

U∈L(X)
‖Y −U‖2

2

• This minimization has an explicit solution: the orthogonal projection of Y onto L(X)

• If we consider Pn×n the orthogonal projector onto L(X), such that

Ŷ = PY, P′ = P, P2 = P

• How can we derive the orthogonal projector in terms of X ?
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Orthogonal projection (2)

• The idea is that the residuals Y − Ŷ should be orthogonal to L(X)

∀j ∈ {1, . . . , p}, 〈xj ,Y − Ŷ〉 = 0

• Which provides the normal equations

X′
(

Y − Ŷ
)

= X′
(

Y − Xβ̂
)

= 0

• Suppose that n� p, and rank(X) = p, we have

P =
(
X′X

)−1
X′

β̂ =
(
X′X

)−1
X′Y
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Statistical interpretation of the LS-estimator

• The least-square estimator is a projection estimator

• S = X′X is the empirical covariance of regressors (including their dependencies)

β̂ = S−1X′Y

• β̂ : generalized correlation coefficient normalized by the dependencies between regressors

• If features are highly correlated (redundancy), S−1 is degenerate

• The feature-based (marginal) analysis vs. global analysis that accounts for dependencies
between regressors.
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Example of correlation between features

• Prostate Cancer data [? ], n = 97, p = 10

• Predict PSA levels using clinical covariates

• High correlation between features

• Redundancy between features
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Example of correlation between features

• Prostate Cancer data [? ], n = 97, p = 10

• Predict PSA levels using clinical covariates

• High correlation between features

• Redundancy between features
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Example of correlation between features

summary(model.full)

[1] 0.5221043

Call:

lm(formula = lpsa ~ ., data = prostate.train)

Residuals:

Min 1Q Median 3Q Max

-1.64870 -0.34147 -0.05424 0.44941 1.48675

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4292 1.5536 0.276 0.78334

lcavol 1.0466 0.1950 5.366 1.47e-06 ***

lweight 2.2623 0.8224 2.751 0.00792 **

age -1.2477 0.8938 -1.396 0.16806

lbph 0.2123 0.1032 2.056 0.04431 *

svi 0.3515 0.1423 2.469 0.01651 *

lcp -0.2924 0.1566 -1.867 0.06697 .

gleason -0.2012 1.3716 -0.147 0.88389

pgg45 0.3737 0.2151 1.738 0.08755 .

Some coefficients have show variance
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Prediction errors when p increases

• What is the impact of dimensions on the prediction errors

1

n
‖Y − Ŷ‖2

2 = O
(p
n

)
• If we add new individuals : n→∞ and p � n

1

n
‖Y − Ŷ‖2

2 → 0

• If we add new features : p →∞ and p � n

1

n
‖Y − Ŷ‖2

2 = O (1)

14 / 49



Interpretation of the features contribution

• Can we determine the set of contributing features ?

∀j ∈ {1, . . . , p}, β̂j 6= 0

• We can perform a test followed by multiple testing

Hj
0 : {βj = 0}

• Use the LS-estimator, note the marginal strategy

• We can suppose that among p features, only s∗ are non null

{1, . . . , p} = S0 ∪ S1

S0 : {j , β∗j = 0}, S1 : {j , β∗j 6= 0}
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Sparsity assumption

• This hypothesis can be restated with the norm of the parameter

‖β‖0 =

p∑
j=1

1{βj 6=0} = s∗

• Then if we suppose that the number of non-null parameters s∗ � n

1

n
‖Y − Ŷ‖2

2 = O
(
s∗

n

)
−→ 0

• Unfortunately, S1 is unknown, with complexity Cpn
• The sparsity assumption has consequences on the optimization algorithm to find β̂
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Constrained optimization

• The LS-estimator is the solution of:

β̂ = arg min
β∈Rp

‖Y − Xβ‖2
2

• The constrained estimator:

β̂s = arg min
‖β‖0≤s

‖Y − Xβ‖2
2

• This can be reformulated in

β̂λ = arg min
β∈Rp

‖Y − Xβ‖2
2 + λ‖β‖0

• λ is a hyper parameter to balance the intensity of the constraint, to be tuned
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Penalized estimators

• The approach can be generalized:

β̂λ = arg min
β∈Rp

‖Y − Xβ‖2
2 + λ pen(β)

• pen(β) is a penalty function that scores the complexity of the model

• The LASSO estimator penalizes by the intensity of the coefficients

pen(β) = ‖β‖1 =

p∑
j=1

|βj |

• The RIDGE estimator penalizes by the square of the coefficients

pen(β) = ‖β‖2
2 =

p∑
j=1

β2
j

18 / 49



Outline

1. The multi-loci model, algebra of linear models

2. Increasing the dimension of linear models

3. The bias-variance trade-off

4. Generalization error and cross validation

5. Regularization and Penalization

6. Feature selection

19 / 49



General presentation

• We have some data recording on the same individuals (Yi ,Xi )i=1,n

• These data are characterized by a joint distribution P(Y,X)

• We suppose that Y is the response variable, X are the features, supposed fixed

P(Y,X) = P(Y | X)P(X)

• To learn the relationship between Y and X we suppose that:

Yi = f (Xi ) + εi

• f : a model to links the features to the response (unknown)

• εi : random prediction errors, centered E(εi ) = 0, often supposed i .i .d .
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What is f ?

• We want to minimize the prediction error by finding f such that

f = arg min
ϕ

E
[(

Y − ϕ(X)
)2]

• The best prediction of Y at every point X in terms of quadratic risk is the conditional
expectation:

f (X) = E
(
Y | X

)
• In linear regression we suppose that the conditional expectation is linear wrt X

f (X;β) = Xβ

• Then the determination of the model consists in estimating β (parametric model)
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What is a model collection ?

• We define a model by specifying the class of functions f , for instance

F0 :
{
f (x) = β0

}
F1 :

{
f (x) = β0 + β1x

}
Fsin :

{
f (x) = sin(ωx)

}
Fexp :

{
f (x) = e−iωx

}
• A model is characterized by its complexity and size

• We propose a class of model, among which we would like to find ”the best”
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Loss function and minimization criterion

• Define a loss function that scores the quality of fit of the model

`
(
Y, f (X)

)
• The loss function depends on the statistical model and on the objectives

`
(
Y, f (X)

)
=

1

n

n∑
i=1

‖Yi − f (Xi )‖2
2, least squares

=
1

n

n∑
i=1

max
(

0, 1− Yi f (Xi )
)

hinge

• The estimator f̂ of a model f is a minimizer of the loss:

f̂ = arg min
f ∈F

{
`
(
Y, f (X)

)}
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The train set

• Training set : the response and the features are jointly observed

D =
{

(Yi ,Xi ), i = 1, . . . , n
}

• An estimator is a function of the train set

f̂D = arg min
f ∈F ,(Y,X)∈D

{
`
(
Y, f (X)

)}
• Statistical properties of an estimator:

EY,X

(
f̂D

)
=

∫
xy × f̂D(x , y)dP(Y,X)
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Properties of an estimator

• Let us suppose that there is a true model: f ∗

• The bias:
Bias(f̂ ) = EY,X

(
f ∗(X)− f̂ (X)

)
• The Variance:

V(f̂ ) = VY,X

(
f̂ (X)

)
• The Mean Square error:

MSE(f̂ ) = EY,X

(
f ∗(X)− f̂ (X)

)2
= Bias(f̂ )2 + V(f̂ )

• The prediction errors:

Pred(f̂ ) = EY,X

(
Y − f̂ (X)

)2
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Properties of the LS estimator in linear regression

• The bias:
Bias(β̂) = 0

• The Variance:
V(β̂) = σ2

(
X′X

)−1

• The Mean Square error:
MSE(β̂) = σ2

(
X′X

)−1

• The prediction errors:

Pred(β̂) = σ2 p

n
+ σ2
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Risk of an estimator

• Central concept 1: the model collection does not necessarily catch the true model :

f ∗ /∈ F

• The oracle is the best possible estimator if all information was available

• From Vapnik and Chervonenskys (∼1960s) the risk of an estimator

R(f̂ ) = E‖f ∗ − f̂ ‖2 = E‖f ∗ − foracle + foracle − f̂ ‖2

• The Approximation error
E‖f ∗ − foracle‖2

• Estimation error
E‖foracle − f̂ ‖2

• How to control the estimation error ? How to compute the approximation error ?
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Approx Err Estimation Err< Approx Err Estimation Err>
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Need to assess the generalization error

• The estimator has been trained on the training set D:

f̂D = arg min
f ∈F ,(Y,X)∈D

{
`
(
Y, f (X)

)}
• The estimator is expected to have good properties on the train set D: the learning error

Pred
(
f̂ (XD)

)
=

1

ntrain

∥∥∥YD − f̂D(XD)
∥∥∥2

=
1

ntrain

∥∥∥YD − XDβ̂D

∥∥∥2

• What would be its performance on another set ? The test set T

Pred
(
f̂ (XT )

)
=

1

ntest

∥∥∥YT − f̂D(XT )
∥∥∥2

=
1

ntest

∥∥∥YT − XT β̂D

∥∥∥2

• The Learning Error can dramatically underestimate the Generalization Error
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Cross-validation : K -fold scheme

• Split the data into K partitions
I0 = {1, . . . , n}

I0 =
⋃
k

Ik , |Ik | ∼ K/n

• For each fold, define a train and test

Dk = Ik , Tk = I0 \ Dk

• Train the model on the train set

f̂Dk
= arg min

Dk

{
`
(
Y, f (X)

)}
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Cross-validation : K -fold scheme

• Estimate the generalization error on the test set

P̂redk

(
f̂
)

=
1

|Tk |
∑
i∈Tk

`
(
Yi , f̂Dk

(Xi )
)

• Average all prediction errors on all folds

P̂red
(
f̂
)

=
1

K

K∑
k=1

P̂redk

(
f̂
)

• This approach learns the model K times

• When K = n this is called cross-validation

• Choose K ∼ 5− 10.
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Strategy

• The model with the highest number of
parameter has low bias and high variance

• Prevent overfitting

• Improve interpretability

• Improve prediction accuracy
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Penalized Empirical Risk

• The empirical risk minimization ensures low approximation error (low bias)

min
f ∈F

n∑
i=1

`
(
Yi , f (Xi )

)
• We want to control the estimator errors (variance) by the complexity of the model

• Minimize the penalized empirical risk

f̂λ = arg min
f ∈F

1

n

n∑
i=1

`
(
Yi , f (Xi )

)
+ λ pen(F)

• Accept some bias provided the variance is reduced: the shrinkage strategy
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Preventing degeneracy with the Ridge penalty in
Regression

• Come back to the linear regression model:

Y = Xβ + E

• Consider the penalized risk

Rλ(Y;β) =
1

n

n∑
i=1

(Yi − Xiβ)2 + λ

p∑
j=1

β2
j

• The Ridge estimator is

β̂
ridge

λ = (X′X + λI)−1X′Y
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Intuition behind the ridge strategy

• When features are highly correlated and/or p increases, X′X becomes degenerate

• The Ridge penalty regularized the empirical covariance matrix of features

Sλ = X′X + λI

• The LS estimator is such that

β̂
ridge

=
(
S−1
λ X′X

)
β̂
ls

=
(
I− λS−1

λ

)
β̂
LS

• if λ = 0 we get the OLS.

• if features are independent X′X = I

β̂
ridge

λ =
1

1 + λ
β̂
LS
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Intuition behind the ridge strategy

• The penalty introduces some bias

• The penalty reduces the variance:

V(β̂
ridge

) = σ2S−1
λ × S× S−1

λ ≤ V(β̂
LS

)

• When λ→ 0 there is no biais but the variance increases

• When λ→∞ there is high biais but the variance decreases

• A trade-off should be made by calibrating λ.

• Dependent variables are grouped

• Does not perform selection, appropriate for prediction ( low interpretability )
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Feature selection

• This has been one of the hot topic in machine learning for years

• We can suppose that among p features, only s∗ impact the response

{1, . . . , p} = S0 ∪ S1

S0 : {j , β∗j = 0}, S1 : {j , β∗j 6= 0}

• Suppose that the underlying efficient model would be

E(Y | X) ' XS1βS1
=
∑
j∈S1

Xijβj

• Increase prediction accuracy, improve interpretability s∗ < p.
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Optimization strategies

• Many options: exhaustive, iterative approach (stepwise), forward-backward selection,
stepwise

• Need an algorithm to find the subset and a model selection criterion to select the
number of features

• The old ways : find the highest correlated feature

ĵ1 = arg max
j

corr(Y, xj)

ĵ2 = arg max
j

corr(Y, xj | xĵ1)

• Works if p is small, and cross correlations not too high S

43 / 49



44 / 49



Selecting with the LASSO

• Least Absolute Shrinkage and Selection Operator

• Consider the penalized risk

1

n

n∑
i=1

(Yi − Xiβ)2 + λ

p∑
j=1

|βj |

• The solution is not explicit in the general case : need optimization techniques

• Different optimization strategies to find the best solution

• Has now become a standard in machine learning
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What happens if features are independent ?

• The orthogonal case : S = X′X = I the LASSO has an explicit solution

β̂lassoj = max

(
0, 1− λ

|β̂LSj |

)
× β̂LSj

• This is called a thresholding estimator

• In the general case S 6= I, the LASSO thresholds features while accounting for their
correlations
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calibration of the hyperparameter

• Penalized estimators depend on the hyperparameter λ : should be tuned!

• Grid Search: compute β̂λ for λ ∈ [λmin, λmax]

• Select the best of the best estimator β̂
λ̂

• A training data set is a dataset used during the learning process and is used to fit the
parameters:

• A validation data set is a dataset used to tune the hyperparameters of predictor.

• A test set is an additional dataset used only to assess the performance (i.e.
generalization) of a fully specified predictor.

• In all cases, after tuning the parameters and selecting a model, you should fit the chosen
model on the complete dataset (not only on the train dataset) to define the final
predictor.
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Cross Validation for calibration [? ]

48 / 49



References

[1] J. Lever, M. Krzywinski, and Altman N. Model selection and overfitting. Nat Methods,
13:703–704, 2016.

[2] T. A. Stamey, J. N. Kabalin, J. E. McNeal, I. M. Johnstone, F. Freiha, E. A. Redwine, and
N. Yang. Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the
prostate. II. Radical prostatectomy treated patients. J Urol, 141(5):1076–1083, May 1989.

49 / 49


	The multi-loci model, algebra of linear models
	Increasing the dimension of linear models
	The bias-variance trade-off
	Generalization error and cross validation
	Regularization and Penalization
	Feature selection

