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Basic Principles

• Identification of polymorphisms that
impact mesurable phenotypes

• On non-related individuals (or
distant kinship)

• Identify polymorphisms that
systematically vary between
individuals in different states

• The basic idea is to detect variants
that are more present in cases wrt
controls
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Different types of association studies

• Targetted polymorphism: one
targetted locus (known)

• Candidate Gene Approach: known
gene (associated with cases), study
5-10 SNPs in the gene

• Fine Mapping: a given region with
many genes (1-10Mb), ∼100 SNP

• Genome-wide: need a catalog of
SNPs (∼300,000) for a search of
case-associated variants
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Challenges in association studies

• Easy cases: causal SNP with direct
genotype/phenotype relation

• Complex cases: phenotype is difficult
to define/measure. Complex and
partially known genotype/phenotype
relation

• Environmental impact ?

• Frequency and size of effects are two
main components of association
studies
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QTL/Association

• Association case/control: association between a locus with a discrete response
(contingency table, Fisher test)

• The testing strategy does not allow the inclusion of other factors (weight, age, clinic)

• QTL (quantitative trait loci): association of a locus with a quantitative trait

• In this case we use a regression model with the trait as response variable, and the
number of alleles as covariates (explanatory variables)
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Data

M1 M2 . . . Mp status Age Sex Glycemia

i = 1 0 1 0 0 38 F 0.8

i = 2 1 0 2 1 15 M 0.2
...

i = N 0 2 1 0 90 F 1.5

• For each individual we know the genotype on many markers (for instance p SNPs).

• We can have clinial data (non genomic)

• How to explain the variations of a response given genotyping and clinical data ?
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Basic Framework in Quantitative Genetics

• The general framework in quantitative genetics relates the observed phenotype to
genetic and environmental components: P = G + E + G × E

• Supposing independence between components (?), the variance can be written such that
VP = VG + VE + VG×E
• Heritability (broad sense)can be defined as: H2 = VG/VP

• Heritability (strict sense) can also be written only with the additive part of the genetic
variance h2 = VA/VP
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Missing Heritability ?

• Despite many association studies
part of the variability of many traits
remains unexplained

• Can we include other genetic
markers (CNV, epistasy)

• Question the ”Common variant /
Common disease” hypothesis ?

• Impact of rare variants

• Individual variations should be
modeled more carefully in statistical
models
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Notations

• Denote by I the total number of genotypes, and i ∈ {1, . . . , I} the i th genotype for
instance

I = 3, and i ∈ {AA, Aa, aa}

• Denote by j the j th replicate of genotype i , with ni the number of replicates in genotype
I .

• Denote by yij the trait of the individual j of genotype i

• We observe y a vector of size n =
∑

i ni made of I vectors yi :

y = [y1, . . . , yI ]

• Each yi = [yi1, . . . , yi ,ni ], with yi = [yij ] j = 1, . . . , ni .
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First model

• We suppose that the observed trait yij is the realization of a Gaussian variable Yij such
that:

Yij ∼ N
(
E(Yij),V(Yij)

)
• The model concerns the expectation of Yij

E(Yij) = µi , V(Yij) = σ2

• The model supposes that the expectation of the trait only depends on the genotype, and
that the variance of the trait is constant

• We suppose that Yij are independents (intra and inter-genotype)
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Illustration
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New formulation with the conditional expectation

• Let’s introduce the covariate Xij such that Xij = 1 if individual j has genotype i and
Xij = 0 otherwise

• If we had to model the distribution of Xij we could consider a multinomial distribution

• But we are not interested in the variations of X, but of those of Y with a given
genotype (X is fixed)

• The model consists in writing the conditional expectation of Y once X has been
observed:

E (Yij |Xij = 1) = µi , V (Yij |Xij = 1) = σ2

• This can also be written such that:

E (Yij |Xij = xij) =
I∑

i=1

µixij
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Notation matricielle
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Defining Residuals

• We want to decompose the expectation of the signal wrt covariates X

• Residuals are defined as what is left once this contribution has been removed

• Introduce a new variable called residual such that

Eij = Yij − µi , Eij ∼ N (0, σ2) (iid)

• It’s a random error term, that is defined as the difference between the observations and
what is expected by the model

• Using residuals the model becomes

Yij = µi + Eij , Eij ∼ N (0, σ2) (iid)

Noisy Observations= signal + random errors

• We suppose that the signal is in the expectation of the model
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Parameters and estimators

• Parameters (µi )i ,I parameters for the mean + 1 parameter for the variance
• The mean square criterion is

d2(Y,µ) =
I∑

i=1

ni∑
j=1

(Yij − µi )2 =
I∑

i=1

ni∑
j=1

E 2
ij

• The MS estimator of the mean is the empirical mean

µ̂i =
1

ni

ni∑
j=1

Yij =
1

ni
Yi+ = Yi•

• One estimator of the variance is the so-called residual variance

σ̂2 =
1

n − I

I∑
i=1

ni∑
j=1

(Yij − µ̂i )2

17 / 61



Outline

1. Genetic Association studies

2. ANOVA to test for association

3. Differential Expression Analysis for sequencing data

4. Multiple Testing

18 / 61



Basic Principles

• Many studies in Genomics can be
restated as a comparison problem

• For each gene, is the expression
different from one condition to
another ?

• Compare average expression wrt
biological variance

• How to compute biological variability
?

• Account for confounding effects
(technical variability)
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The ANOVA framework

• Yijr : expression (continuous) for gene i in condition j at replicate r

• Perform DE between conditions using model

Yijr ∼ N
(
E(Yijr ), σ2

)
E(Yikr ) = µij = µ+ αi + βj + (αβ)ij

• The parameters of the model are interpreted as :
• αi : mean expression of gene i (across conditions),
• βj : mean expression in condition j (across genes),
• (αβ)ij : interaction effect gene x condition

• Allows to integrate normalization while testing
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Testing framework

• Hypothesis : no expression difference between conditions

Hi
0 : {(αβ)i1 = (αβ)i2}

• The classical statistic for gene i is the Student statistic

Ti =
|α̂βi1 − α̂βi2|

σ̂
×
√

2R − 2 ∼
H0

T (2R − 2)

• Estimation of mean fixed effects is done by Maximum Likelihood
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What about the estimation of the dispersion
parameter ?

• Refinements / difficulties concern the estimation of σ, the dispersion parameter

• A common variance to all genes σ2 : robust but lacks of power
• A specific variance to every gene σ2

i : powerful but sensitive to outliers,

- Large sampling variance
- To be stabilized empirically

• Groups of variances (combination of both)
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Sequencing data are count data

• Sequencing technologies provide read
counts

• The underlying statistical
distribution is Poisson

• Poisson variables show specific
patterns of variability

• Heteroskedasticity : variance
function of the mean
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Overdispersed count distribution

• For Poisson variables E(X ) = V(X )

• Sequencing data are overdispersed
and the best model is the negative
Binomial distribution:
V (µ) = µ+ κµ2

• Very challenging to properly estimate
the biological variability

from
[? ]
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How bad is the situation in single cell data ?

Overdispersion is mainly biological because diversity is high between cells [? ]
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Expression is a stochastic bursty process
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The curse of Dropouts

• Low starting amount of RNAs: transcripts will be missed during RT

• Amplification is needed (×106), which creates distortions

• Stochasticity of gene expression (bursty process) sparsity of the data, high proportion of
zeros

• Dropout depends on cells (different in different wells),

• Lowly expressed genes : sampling / amplification issues

• Highly expressed genes: is more likely to indicate a burst
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The Generalized Linear Model framework

• Yijr : the read count (positive integer), for gene i in condition j

• Define the Generalized Linear Model (GLM) by setting

Yijr ∼ P(µij)

logE(Yijr ) = log(µij) = µ+ αi + βj + (αβ)ij

• Parameters have the same interpretation

• Testing hypotheses are similar : Hi
0 : {(αβ)i1 = (αβ)i2}

• Dispersion parameter ? Test statistics ?
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Testing Strategies based on LRT

• Compare different models, for instance

log(µij) = µ+ αi + βj

log(µij) = µ+ αi + βj + (αβ)ij

• Use the Ratio of log likelihoods as a Statistics, which incorporates all infos:

LRT = −2 log

(
L(µ̂, α̂, β̂, α̂β)

L(µ̂, α̂, β̂)

)
∼
H0

χ2(∆df )

• This has been shown to be the best strategy on Sequencing data
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Conclusion: don’t think Normal !

• Use Generalized Linear Models to perform Count regression, and not Gaussian
regression on the log-counts

• Incorporate effects in the model to perform a global analysis that accounts for
distributional characteristics

• Do not perform tests that imply Poisson distribution when data are over-dispersed

• Use Likelihood Ratio Tests to compare models

• Overdispersion leads to estimation issues due to numerical problems
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Example

from http://imgs.xkcd.com/comics/significant.png
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GWAS

• m ∼ 106 tests (genomic markers)

• n ∼ 103 − 104 observations
(individuals)

• Which markers are significantly
associated with a phenotype of
interest?
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Gene expression analysis

• One test for each gene!

• m ∼ 104 tests
(genes/transcripts/splicing variants)

• n ∼ 101 − 103 observations
(individuals)

• Which genes are differentially
expressed?
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Why is the p-value so important ?

• A null hypothesis supposes the
absence of effect H0

• We can determine what could be the
expected behavior of the data if the
null hypothesis were true

• Risk of taking the wrong decision
under H0

• p-value quantifies the risk of a
procedure https://towardsdatascience.com/

38 / 61

https://towardsdatascience.com/


Definition of the risk for one hypothesis

• The test procedure provides a test
statistics used to build a decision rule

• pv (x) = P(T (X) > tobs(x) | H0)

• Reject if pv (x) < α

• α is an admissible risk

• Control α while maximizing power
1− β

H0 true H0 false

Accept 1− α β

Reject α 1− β
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Example with the Leukemia dataset

• Chiaretti et. al., Clinical cancer research,
11(20):7209–7219, 2005

• Data and code available from https:

//pneuvial.github.io/sanssouci/

• Expression measurements (mRNA)
m = 9838 genes

• Marginal testing ( gene by gene )

BRC/ABL NEG n

37 42 79

Which genes differ between BRC/ABL
and NEG ?
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Illustration

No evidence of difference between groups
Some evidence of difference between groups.

”Significant”?
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Definition of the risk for many hypotheses

• Consider m hypotheses H1
0, . . . ,Hm

0

• Perform m tests based on p1, . . . , pm
• m0 is the total number of true null

hypotheses

• Consider a threshold tj such that Hj
0

is rejected if pj < tj
• For many hypothesis, control the

expected number of false positives
E(V )

H0 true H0 false Total

Accept U T m − R

Reject V S R

Total m0 m −m0 m
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First 192 genes of the Leukemia data set:

Genes with p-value < 0.05 highlighted in red
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When considering 192 simulated with no effect

Genes with p-value < 0.05 highlighted in red
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Considering a fixed threshold does not control the risk

• Data: p1, . . . pm: p-values for m tests

• Strategy: reject H0 for all i such
that pi ≤ α
• Expected # of type I errors scales

linearly with m

• Probability of a type I error quickly
grows to 1
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Notations

• H = {1, . . .m} m null hypotheses to be tested

• H0 ⊂ H: true null hypotheses,

• H1 = H \H0

• m0 = |H0|, π0 = m0/m

• (pi )1≤i≤m: p-values

• R: a set of rejected hypotheses

• V = |R ∩H0| : number of ”false positives” within R.
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Multiple testing risks and their control

• Family-Wise Error Rate:
FWER = P(V > 0)

• False Discovery Rate:

FDR = E
(

V

|R| ∨ 1

)
• Aim : from the data determine the set of rejected hypotheses R, by choosing a

threshold t̂ such that:
R =

{
i ∈ H | pi < t̂

}
• How can we control these risks ? (dependency assumptions, power/conservativeness,

algorithms and their implementations)
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Expected # of type I errors scales linearly with m

• p1, . . . pm: p-values for m tests

• Strategy: reject H0 for all i such that pi ≤ α
• Recall: V =

∑
i∈H0

1pi≤α

E (V ) =
∑
i∈H0

EH0(1pi≤α)

E (V ) =
∑
i∈H0

PH0(pi ≤ α) =
∑
i∈H0

α = |H0|α = π0mα
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Probability of a type I error quickly grows to 1

• p1, . . . pm: p-values for m tests
• Strategy: reject H0 for all i such that pi ≤ α
• Recall: V =

∑
i∈H0

1pi≤α

P(V = 0) = P(∀i ∈ H0, pi > α)

Assuming independent tests:

P(V = 0) =
∏
i∈H0

P(pi > α)

=
∏
i∈H0

(1− α)

= (1− α)m0

Hence P(V > 0) = 1− (1− α)m0
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FWER control with the Bonferroni procedure

• Definition: Reject all i such that pi ≤ α/m
• Properties: FWER control at level π0α(≤ α) under arbitrary dependence

• Limitation: Conservativeness: α/m can be small!

• Directions for increased power :

- other dependency assumptions: independence, positive dependence;

- estimation of π0

50 / 61



Proof

• Let V (t) be the number of false positives obtained by rejecting all p-values less than t:

V (t) =
∑
i∈H0

1pi≤t

• We have:
P(V (t) > 0) ≤

∑
i∈H0

PH0(pi ≤ t) =
∑
i∈H0

t = m0t

• The Bonferroni procedure at level α rejects all p-values less than t = α/m

• Its FWER is
P(V (α/m) > 0) ≤ π0α.
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Leukemia data set: no multiple testing correction

971 genes called significant genes at (uncorrected) level α = 0.05
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Leukemia data set: FWER thresholding by Bonferroni

20 genes called significant at FWER level α = 0.05
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FWER control with the Sidak procedure

• Definition: Reject all i such that pi ≤ 1− (1− α)1/m

• Properties: FWER control at level 1− (1− α)π0 ≤ α under independence

• Sidak is slightly more powerful than Bonferroni, but at the price of a much narrower
applicability

• In genomic applications, Bonferroni should be preferred to Sidak
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FWER control with the Holm procedure

• Let p(1) ≤ . . . ≤ p(m) be the ordered p-values.

• Definition: Reject all i such that ∀j ≤ i , p(j) ≤ α/(m − j + 1)

• Properties: FWER control at level α under arbitrary dependence

• same guarantees as Bonferroni, at least as powerful:

α/(m − j + 1) ≥ α/m

!

• Holm should be preferred to Bonferroni
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Leukemia data set: FWER thresholding by Bonferroni

20 genes called significant at FWER level α = 0.05
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FDR control

• sort p-values: p(1) ≤ . . . ≤ p(m)

• define Î = max
{
k|p(k) ≤ α k

m

}
• reject all i such that pi ≤ p

(Î )
(= αÎ/m)

• π0 = |H0|/m: proportion of true null hypotheses

• FDR = E
(

V
|R|∨1

)
: expected proportion of false positive among rejections

• BH (α) provides FDR control at level π0α if the p-values under H0 are either
independent or positively associated

• Improvements in the statistical literature: general dependence: Benjamini and Yekutieli
(2001), estimation of π0, in the hope of a sharper FDR control
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Leukemia data set: FDR control by BH

163 genes called significant at FDR level α = 0.05
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The BH procedure is widely used

• Controlling the false discovery rate: A practical and powerful approach to multiple
testing, Y. Benjamini, Y. Hochberg, Journal of the Royal Statistical Society: Series B
(Statistical Methodology), Vol 57(1), pp. 289–300. 1995.

• 6, 000 publications in the PubMed database with ”False Discovery Rate” in their title or
abstract

• 60, 000 citations according to scholar.google.com.

• Kaplan, Meier. Nonparametric estimation from incomplete observations: 57,000

• Dempster, Laird, Rubin. Maximum likelihood from incomplete data via the EM
algorithm (1977): 56,000

• Cox. Regression and life tables (1975): 50,000

• Bland, Altman. Statistical methods for assessing agreement between two methods of
clinical measurement: 43,000

• Tibshirani. Regression shrinkage and selection via the lasso (1996): 30,000
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Conclusion

• (large-scale) multiple testing is ubiquitous in biomedical data analysis

• multiple testing risks 6= multiple testing procedures

• FWER and FDR control different risks:

- FWER for confirmatory analyses

- FDR for ”exploratory” analyses

• Some caveats

- interpretation of FDR control: FDR is an expectation!

- applicability conditions (dependence assumptions)

• Related topics not explicitly discussed:

- scientific reproducibility, hidden multiplicity and selective inference

- online multiple testing
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