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Outline

1. Genetic Association studies
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Basic Principles

® |dentification of polymorphisms that
impact mesurable phenotypes

® On non-related individuals (or
distant kinship)

® |dentify polymorphisms that
systematically vary between
individuals in different states

® The basic idea is to detect variants
that are more present in cases wrt
controls
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Different types of association studies

® Targetted polymorphism: one
targetted locus (known)

® Candidate Gene Approach: known
gene (associated with cases), study

. Indirect .. > Disease
5-10 SNPs in the gene association _==" phenotype
’f
° 1 1 - 1 1 1 L4 Direct Direct
Fine Mapping: a given region with » Direct Direct
many genes (1-10Mb), ~100 SNP } : Haplotype
Typed marker locus Unobserved causal locus

® Genome-wide: need a catalog of
SNPs (~300,000) for a search of
case-associated variants



Challenges in association studies

® Easy cases: causal SNP with direct
genotype/phenotype relation

® Complex cases: phenotype is difficult
to define/measure. Complex and
partially known genotype/phenotype
relation

® Environmental impact 7

® Frequency and size of effects are two
main components of association
studies

Effect size

Rare variants.

of small effect
(very hard to identify
by genetic means)

Low.

Allele frequency
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QTL/Association

Association case/control: association between a locus with a discrete response
(contingency table, Fisher test)

The testing strategy does not allow the inclusion of other factors (weight, age, clinic)

QTL (quantitative trait loci): association of a locus with a quantitative trait

In this case we use a regression model with the trait as response variable, and the
number of alleles as covariates (explanatory variables)
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Data

My M, ... M, | status Age Sex Glycemia
i=11] 0 1 0 0 38 F 0.8
i=2 | 1 0 2 1 15 M 0.2
i=N1| 0 2 1 0 90 F 1.5

® For each individual we know the genotype on many markers (for instance p SNPs).

® We can have clinial data (non genomic)

® How to explain the variations of a response given genotyping and clinical data 7
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Basic Framework in Quantitative Genetics

® The general framework in quantitative genetics relates the observed phenotype to
genetic and environmental components: P=G+ E+ G x E

® Supposing independence between components (?), the variance can be written such that
Vp = Vs + Ve + Voxe
® Heritability (broad sense)can be defined as: H?> = V¢ /Vp

® Heritability (strict sense) can also be written only with the additive part of the genetic
variance h> = V4 /Vp
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Missing Heritability ?

Despite many association studies
part of the variability of many traits
remains unexplained

Can we include other genetic
markers (CNV, epistasy)
Question the "Common variant /
Common disease” hypothesis ?
Impact of rare variants

Individual variations should be
modeled more carefully in statistical
models

The case of the missing heritability

Whensscientists opened up the human genome, they expected o find the genetic components of
common traits and diseases. But they were nowhere to be seen. Brendan Mahershines a light on
six places where the missing loot could be stashed away.
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Outline

2. ANOVA to test for association
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Notations

Denote by / the total number of genotypes, and i € {1,...,/} the i*" genotype for
instance
I =3, andic {AA Aa aa}

e Denote by j the j™ replicate of genotype i, with n; the number of replicates in genotype
I.

® Denote by yj; the trait of the individual j of genotype i

® \We observe y a vector of size n =) . n; made of | vectors y;:
y=Iyi---,yl

® Eachy; = [y, .-, Yin) withy; = [yl j=1,...,n;.

11/61



First model

® We suppose that the observed trait y;; is the realization of a Gaussian variable Yj; such
that:
Vi ~ N (E(Y5), V(Yy))

The model concerns the expectation of Yj;

E(Y;) = pi, V(Yj) =o?

The model supposes that the expectation of the trait only depends on the genotype, and
that the variance of the trait is constant

® We suppose that Yj; are independents (intra and inter-genotype)
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lllustration

F
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New formulation with the conditional expectation

® Let's introduce the covariate Xj; such that Xj; = 1 if individual j has genotype /i and
Xij = 0 otherwise

¢ If we had to model the distribution of Xj; we could consider a multinomial distribution

® But we are not interested in the variations of X, but of those of Y with a given
genotype (X is fixed)

® The model consists in writing the conditional expectation of Y once X has been
observed:

E(YylXj=1) = pi, V(Y3Xj=1) =0

® This can also be written such that:
!
E(Y5lX5 = x3) = D pixi
i=1
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Notation matricielle
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Defining Residuals

® We want to decompose the expectation of the signal wrt covariates X

® Residuals are defined as what is left once this contribution has been removed
® |ntroduce a new variable called residual such that

Ej = Yj— pi, Ej ~N(0,0°) (iid)
® |t's a random error term, that is defined as the difference between the observations and

what is expected by the model

® Using residuals the model becomes

Yy = i+ Ej, Ej ~N(0,0°) (iid)

Noisy Observations= signal + random errors

[ ]

We suppose that the signal is in the expectation of the model
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Parameters and estimators

® Parameters (u;);,] parameters for the mean + 1 parameter for the variance
® The mean square criterion is

S WIS -

i=1 j=1 i=1 j=1

® The MS estimator of the mean is the empirical mean

1 — 1
ﬁlzngyij:n, i+ = Yie
J:

1
® QOne estimator of the variance is the so-called residual variance

! n;
DI M

i=1 j=1
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Outline

3. Differential Expression Analysis for sequencing data
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Basic Principles

® Many studies in Genomics can be A cell B cell
restated as a comparison problem o®

® For each gene, is the expression 2 g
different from one condition to N\ 7/
another ? SoBNA-seq

d Compare average expression wrt Differential expression analysis

biological variance

® How to compute biological variability
?

® Account for confounding effects
(technical variability)
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The ANOVA framework

Yjjr : expression (continuous) for gene i in condition j at replicate r

Perform DE between conditions using model

Yir ~ N (E(Yjr), 0?)

]E(»/ikr) — /[U = U + Qf —+ A))J + (”‘3)!']'

® The parameters of the model are interpreted as :
® «; : mean expression of gene i (across conditions),
® [(; : mean expression in condition j (across genes),
® (afB); : interaction effect gene x condition

Allows to integrate normalization while testing
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Testing framework

® Hypothesis : no expression difference between conditions

Ho : {(aB);y = (aB) )

® The classical statistic for gene i is the Student statistic

T — laBiy :aﬁ;2| y mg T(2R —2)
ag 0

e Estimation of mean fixed effects is done by Maximum Likelihood
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What about the estimation of the dispersion
parameter ?

Refinements / difficulties concern the estimation of o, the dispersion parameter

2 - robust but lacks of power

® A common variance to all genes o
® A specific variance to every gene a,-z . powerful but sensitive to outliers,

- Large sampling variance
- To be stabilized empirically

Groups of variances (combination of both)
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Sequencing data are count data

(=) - on @ - &
® Sequencing technologies provide read ] o wm S0 ==
- - o - [ ) - (&)
counts - - Py
® The underlying statistical .
distribution is Poisson
® Poisson variables show specific ] @D @D =) - e
. .. (] (& @ ap @
patterns of variability oo
® Heteroskedasticity : variance 4 i
function of the mean } }
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Overdispersed count distribution

® For Poisson variables E(X) = V(X)

® Sequencing data are overdispersed
and the best model is the negative
Binomial distribution:
V(u) = p+ rp?

® \ery challenging to properly estimate

the biological variability S PR A T PR
10 10 10 10 1 10

mean from

[? ]

variance
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How bad is the situation in single cell data ?

High-magnitude
outlier

Overdispersion

Dropout events

Log,o(RPM) in cell 1

Log,o(RPM) in cell 2

Overdispersion is mainly biological because diversity is high between cells [? ]
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Expression is a stochastic bursty process

Promoter active periods
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The curse of Dropouts

® | ow starting amount of RNAs: transcripts will be missed during RT
e Amplification is needed (x10°), which creates distortions

e Stochasticity of gene expression (bursty process) sparsity of the data, high proportion of
zeros

® Dropout depends on cells (different in different wells),
® Lowly expressed genes : sampling / amplification issues

® Highly expressed genes: is more likely to indicate a burst
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The Generalized Linear Model framework

® Y : the read count (positive integer), for gene i in condition j
¢ Define the Generalized Linear Model (GLM) by setting
Yirp ~ Plui)
log E(Yjr) = log(pj) = p+ai+ B+ (af);

Parameters have the same interpretation

Testing hypotheses are similar : Hi : {(a);; = (aB):»}

Dispersion parameter ? Test statistics ?
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Testing Strategies based on LRT

® Compare different models, for instance

log(nj) = w+a;+pG;
log(py) = p+ai+ B+ (O‘B)ij

® Use the Ratio of log likelihoods as a Statistics, which incorporates all infos:

~ X2(Adf)

LRT = —2log (L(“’f"f’f‘ﬁ)>
L, a,pB) ) Ho

® This has been shown to be the best strategy on Sequencing data
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Conclusion: don’t think Normal !

® Use Generalized Linear Models to perform Count regression, and not Gaussian
regression on the log-counts

® |ncorporate effects in the model to perform a global analysis that accounts for
distributional characteristics

® Do not perform tests that imply Poisson distribution when data are over-dispersed
e Use Likelihood Ratio Tests to compare models

® Qverdispersion leads to estimation issues due to numerical problems
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Outline

4. Multiple Testing
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Example

WE FOONONO | |THAT Semes Tha,

'i‘gf BEWEEN THEAR IT5 ONLY
Y BEFANS PO A CERTAIN COLOR

ANE (P> 005), THAT CAUSES [T

SCIENTSTS‘
Hrlunmm'

@k

from http://imgs.xkcd.com/comics/significant.png
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http://imgs.xkcd.com/comics/significant.png

Example

WE FOUND NO WE FOUND NO WE FOUND MO WE FOUND NO WE FOUNDNO
LINK, BETWEEN LINK BETWEEN LINK BETWEEN LINK, BETWEEN LINK BETWEEN
SALMON JELLY RED JeLy TURGUOISE JELLY | | MAGENTR JELLY YELLOW JELLY
BEAMS AHD ACNE BEANS AND ANE BEANS AND ACE. BEANS D ANE BEANS AND ANE.
(P>005) (P>005) (p>005), (P>0.05) (P>0.05)
/ / ! !
WE FOUND NG WE FOUND NO WE FOUNDNO WE FOUND A WE FOUND NO
LINK, BETWEEN LINK BETWEEN LINK BETWEEN LINK, BETWEEN LINK. GETWEEN
GREY JELLY TAN Jewr AN JEly GREEN JeLLY MANE JELLY
Esmsmnnms BEPNSPNDFICO‘E BEM&MDME BEANS PHiD ACNE BEANS AND ACNE.
p:-nos) p>oor5} p>cms) (p<o005) (p>0.05)
Wipas 1 @

from http://imgs.xkcd.com/comics/significant.png
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Example

WE FOUND NO WE FOUND NO WE FOUND MO WE FOUNDNO WE FOUNDNO
LINK, BETWEEN LINK BETWEEN LINK BETWEEN LINK, BETWEEN LINK BETWEEN
SALMON JELLY RED JeLy TURGUOISE JELLY | | MAGENTR JELLY YELLOW
BEAMS AHD ACNE BEANS AND ANE BEANS AND ACE. BEANS FiD AKNE BEANS AND ANE.
(P>0.05) (P>005) (p>005) (P>0.05) (P>0.05).
! / / ! !
WE FOUND NG WE FOUND NO WE FOUNDNO WE FOUND A WE FOUND NO
LINK, BETWEEN LINK BETWEEN LINK BETWEEN LINK, BETWEEN LINK. GETWEEN
GREY JELLY TAN JEwr CrAn JELLY GREEN JeLLY MANE JELLY
BEANS PHD ACNE BEPNSPNDF!C"E BEPN&MDME Bsmsmnnms Bmusmonmt:
(p>005) p>oor5} p>005) pwos) p)DD’;)
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from http://imgs.xkcd.com/comics/significant.png
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Example

== News ==
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T ANE! [ @
95 ConfrDEneE .

----- ————

from http://imgs.xkcd.com/comics/significant.png 3561
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GWAS

® m ~ 10° tests (genomic markers)

® n~ 103 — 10* observations
(individuals)

® Which markers are significantly
associated with a phenotype of
interest?

~logso(P)

oooooooo
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Gene expression analysis

One test for each gene!

m ~ 10% tests
(genes/transcripts/splicing variants)

n ~ 10 — 103 observations
(individuals)

Which genes are differentially
expressed?

3 26 22 15 4 05 0 05 1 15 2 25 3
low Normalized Expression high 37 / 61



Why is the p-value so important ?

A null hypothesis supposes the ’ P -
TLO)

absence of effect Hy éAMPNNq P'.STR' Su h/

We can determine what could be the GFeORpeonoRD

expected behavior of the data if the

null hypothesis were true

: : - ea ander e
Risk of taking the wrong decision A;mwf”},«.:..e.
under Hg |

o . AMugen=p lpr(uuw‘
p-value quantifies the risk of a
procedure https://towardsdatascience.com/
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Definition of the risk for one hypothesis

® The test procedure provides a test
statistics used to build a decision rule

® pv(x) = P( T(X) > tobs(x) | HO)
® Reject if p,(x) < « Accept | 1—a B

® o is an admissible risk Reject o 1-8

Ho true  Hg false

® Control o while maximizing power

1-p
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Example with the Leukemia dataset

Chiaretti et. al., Clinical cancer research,

11(20):7209-7219, 2005

Data and code available from https:
//pneuvial.github.io/sanssouci/

Expression measurements (mRNA)
m = 9838 genes

Marginal testing ( gene by gene )

BRC/ABL NEG n
37 42 79

Which genes differ between BRC/ABL
and NEG 7
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lllustration

33232_at: stat = 4.46 ; p = 2.7e-05
33231_at: stat= 1.27 ;p= 0.21
<
—_ s
o N e : —_
4 ° - : o
I S o] E : 3
[ [ : s 7
© : ! © [N
H H =]
4 ! o '
<} ~ - H
© H - 4 © -
_ H [S]
! . i o
© | — - o © T T ° — T T T 1
© T T © T T T T BCR/ABL NEG 4 -2 0 2 4
BCR/ABL NEG 4 2 0 2 4

Some evidence of difference between groups.

No evidence of difference between groups "Significant” ?
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Definition of the risk for many hypotheses

® Consider m hypotheses 7—[(1), . HT

® Perform m tests based on p1,..., pm

) Ho true  Hg false | Total
® myg is the total number of true null 0 0

hypotheses Accept U T m—R

® Consider a threshold t; such that ’H{) Reject v S R
is rejected if p; < t;

® For many hypothesis, control the Total mo m—mo m

expected number of false positives
E(V)
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Genes Wth p- value < 0.05 highligh

First 192 genes of the Leukemia data set:
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When considering 192 simulated with no effect
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Considering a fixed threshold does not control the risk

Expected number of type | errors

® Data: p1,...pm: p-values for m tests . /
® Strategy: reject Ho for all i such e /

that p; < a R
® Expected # of type | errors scales probabily of a ype | ror

10

linearly with m

06 08

Probability of a type | error quickly
grows to 1

P(V>0)

04

02
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Notations

H ={1,...m} m null hypotheses to be tested

Ho C H: true null hypotheses,

Hi=H\Ho

mo = |Ho|, m0o = mo/m

® (pi)i<i<m: p-values

R: a set of rejected hypotheses

V = |RNHp| : number of "false positives” within R.
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Multiple testing risks and their control

Family-Wise Error Rate:
FWER =P(V > 0)

False Discovery Rate:

vV
FDR=E | ——
<|R|V1>

Aim : from the data determine the set of rejected hypotheses R, by choosing a
threshold f such that:

R={ieH|p <t}

® How can we control these risks ? (dependency assumptions, power/conservativeness,
algorithms and their implementations)
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Expected # of type | errors scales linearly with m

® pi,...Ppm: p-values for m tests
e Strategy: reject Ho for all i such that p; < «
® Recall: V=34 lp<a
E(V) =" Eny(lp<a)

i€Ho

E(V) = Z Py,(pi < ) = Z a = |Hola = moma
i€Ho i€Ho
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Probability of a type | error quickly grows to 1

® pi,...Pm: p-values for m tests
® Strategy: reject Hg for all / such that p; < «
® Recall: V=34 lp<a
P(V =0) =P(Vi € Ho, pi > )
Assuming independent tests:

P(V=0)= [] P(pi > @)

i€Ho

- [Ta-a

i€Ho
=(1—a)m
Hence P(V >0)=1— (1 —«a)™
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FWER control with the Bonferroni procedure

e Definition: Reject all i such that p; < a/m
® Properties: FWER control at level mpa(< «) under arbitrary dependence
® Limitation: Conservativeness: a/m can be small!

® Directions for increased power :

- other dependency assumptions: independence, positive dependence;

- estimation of mg
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Proof

Let V/(t) be the number of false positives obtained by rejecting all p-values less than t:

V(t) = Z 1PiSt

i€Ho

P(V <> Puglpi<t)=> t=mpt

i€Ho i€Ho

We have:

The Bonferroni procedure at level « rejects all p-values less than t = a/m
Its FWER is

P(V(a/m) > 0) < mpar.
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53 /61



FWER control with the Sidak procedure

Definition: Reject all i such that p; <1 — (1 — a)Y/™
Properties: FWER control at level 1 — (1 — «)™ < « under independence

Sidak is slightly more powerful than Bonferroni, but at the price of a much narrower
applicability
® In genomic applications, Bonferroni should be preferred to Sidak
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FWER control with the Holm procedure

Let p(1) < ... < p(m) be the ordered p-values.
Definition: Reject all i such that Vj < i, p) < a/(m—j+1)

Properties: FWER control at level o under arbitrary dependence

® same guarantees as Bonferroni, at least as powerful:
a/(m—j+1)>a/m

Holm should be preferred to Bonferroni
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FDR control

® sort p-values: pi1) < ... < pim)

e define | = max {klpwy < akl

e reject all i such that p; < p(A)(: al/m)

® 1 = |Ho|/m: proportion of true null hypotheses

e FDR=E (ﬁ): expected proportion of false positive among rejections

® BH («) provides FDR control at level mo« if the p-values under H are either
independent or positively associated

® |Improvements in the statistical literature: general dependence: Benjamini and Yekutieli
(2001), estimation of mp, in the hope of a sharper FDR control
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Leukemia data set: FDR control by BH

d22Ledl oo
e ===
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163 genes called S|gn|f|cant at FDR level «
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The BH procedure is widely used

Controlling the false discovery rate: A practical and powerful approach to multiple
testing, Y. Benjamini, Y. Hochberg, Journal of the Royal Statistical Society: Series B
(Statistical Methodology), Vol 57(1), pp. 289-300. 1995.

6,000 publications in the PubMed database with " False Discovery Rate” in their title or
abstract

60, 000 citations according to scholar.google.com.

Kaplan, Meier. Nonparametric estimation from incomplete observations: 57,000
Dempster, Laird, Rubin. Maximum likelihood from incomplete data via the EM
algorithm (1977): 56,000

Cox. Regression and life tables (1975): 50,000

Bland, Altman. Statistical methods for assessing agreement between two methods of
clinical measurement: 43,000

Tibshirani. Regression shrinkage and selection via the lasso (1996): 30,000
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Conclusion

(large-scale) multiple testing is ubiquitous in biomedical data analysis

multiple testing risks % multiple testing procedures
FWER and FDR control different risks:

- FWER for confirmatory analyses

- FDR for "exploratory” analyses

Some caveats
- interpretation of FDR control: FDR is an expectation!

- applicability conditions (dependence assumptions)

Related topics not explicitly discussed:
- scientific reproducibility, hidden multiplicity and selective inference

- online multiple testing
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